
Large Scale Dense Visual Inertial SLAM

Lu Ma, Juan M. Falquez, Steve McGuire, Gabe Sibley

Abstract In this paper we present a novel large scale SLAM system that combines
dense stereo vision with inertial tracking. The system divides space into a grid and
efficiently allocates GPU memory only when there is surface information within
a grid cell. A rolling grid approach allows the system to work for large scale out-
door SLAM. A dense visual inertial dense tracking pipeline incrementally localizes
stereo cameras against the scene. The proposed system is tested with both a simu-
lated data set and several real-life data in different lighting (illumination changes),
motion (slow and fast), and weather (snow, sunny) conditions. Compared to struc-
tured light-RGBD systems the proposed system works indoors and outdoors and
over large scales beyond single rooms or desktop scenes. Crucially, the system is
able to leverage inertial measurements for robust tracking when visual measure-
ments do not suffice. Results demonstrate effective operation with simulated and
real data, and both indoors and outdoors under varying lighting conditions.

1 Introduction

(a) (b) (c)

Fig. 1: An example of the reconstruction result for an outdoor scene from 7000
stereo frames (approx 75 million vertices). a - b) Reconstruction detail of a scene
with both shadow and harsh illumination, and snow on the ground. c) An overview
of the camera path.

Lu Ma
University of Colorado - Boulder, Boulder, CO, U.S. e-mail: lu.ma@colorado.edu

Juan M. Falquez
University of Colorado - Boulder, Boulder, CO, U.S. e-mail: juan.falquez@colorado.edu

Steve McGuire
University of Colorado - Boulder, Boulder, CO, U.S. e-mail: stephen.mcguire@colorado.edu

Gabe Sibley
University of Colorado - Boulder, Boulder, CO, U.S. e-mail: gabe.sibley@colorado.edu

1



2 Lu Ma, Juan M. Falquez, Steve McGuire, Gabe Sibley

Large Scale SLAM is an important research area in robotics and computer vision.
Perhaps the point based approaches [1–3] are the most popular ones for large scale
SLAM. Normally, such approaches use a point cloud to reconstruct the scene and
cannot reconstruct connected surfaces. These approaches register the point cloud in
different views and present the reconstruction result as a point cloud. However, a
connected surface is important for planning and control of robots.

Dense SLAM with volumetric representation have been popular in recent years
[4–6]. Such techniques use a Truncated Signed Distance Function (TSDF) to repre-
sent the scene surface and incrementally refine it with the registered depth frames.
Meanwhile, similar approaches have also been proposed in monocular SLAM [7,8].
Usually, these approaches use a fixed amount of GPU memory for tracking and
reconstruction; this hard constraint limits the size of the reconstructed scene and
cannot be used for large scale dense SLAM.

Several systems have been proposed in order to reconstruct large scale scenes
with volumetric approaches. [9, 10] proposed an octree based approach for indoor
dense SLAM. [11–13] used a fixed bounded volume to represent portions of the
scene and incrementally reconstruct it with a rolling scheme. However, these ap-
proaches mostly focus on the indoor scene and uses RGB-D sensors, which does
not perform outdoor SLAM with stereo data. Meanwhile, these approaches heavily
rely on ICP for tracking which are not suitable for outdoor environments due to the
quality of the depth images from the stereo sensors. Besides, a combined ICP + RGB
tracking approach [11] may also fail if the scene only contain simple geometric or
color information.

Here we propose a new large scale dense visual inertial SLAM system that does
not rely on active depth sensing. The system uses rolling grid fusion scheme which
effectively manages GPU memory and is capable of reconstructing a fully dense
scene online. The system obtains depth images from stereo matching [14] and si-
multaneously localizes the camera based on whole image alignment and inertial data
while reconstructing the scene with SDF fusion. The system automatically saves and
loads data from device, host memory and hard disk, and generates a mesh (.obj, .dae,
.ply formats) of the large scene (e.g. 20 millions vertices) in seconds. Given these
components, a wide range of applications can be developed, especially in robotics
where the proposed system is capable of providing high fidelity meshes of any out-
door environment for use in path planning and control.

Perhaps the most similar system to ours is [12, 15–17]. There are, however, key
methodological differences. 1) Our approach focuses on outdoor scenes and uses
stereo data while [12, 15, 17] uses an RGB-D sensor and mainly focus on indoor
scenes. 2) Our system uses an dense visual inertial stereo system for tracking while
other rely solely on cameras, either ICP or RGB-D approach. 3) Our approach uses
a simple rolling grid SDF pipeline for reconstruction while [15, 17] used a hashing
scheme, [12] used a rolling SDF scheme and [16] uses a fix grid volume scheme.

The remainder of this paper is structured as follows: Section 2 briefly covers
preliminaries of our approach. Section 3 covers the technical details of the Rolling
Grid SDF approach. Section 4 covers the dense visual inertial tracking. Section
5 offers testing methods and discusses the system performance with indoor and



Large Scale Dense Visual Inertial SLAM 3

outdoor experiments. Section 6 addresses failure cases and limitations. Section 7
draws conclusions.

2 Overview

2.1 Grid Based Volumetric Representation

The proposed system uses a grid based volumetric representation, namely the Grid
SDF S (see fig. 2), to reconstruct a 3D model of the scene in the current camera
view. Each cell c in the Grid SDF S is a small NxNxN dimensional TSDF (Trun-
cated Signed Distance Function) volume and contains a pointer to GPU memory.
The Grid SDF S contains (xg,yg,zg) cells in the each dimension. Assuming that
the resolution of each voxel is rv, the maximum size of the scene in each dimension
is the number of cells in that dimension times the size of the SDF. For example, for
the x dimension we have:

rx = rv ∗N ∗ xg. (1)

The values of xg and yg are usually selected depending on the horizontal and
vertical field of view of the camera, and zg is based on the maximum depth mea-
surement desired. This can be selected dependent on the maximum expected scene
depth, or ideally, thresholded by the maximum depth uncertainty desired given the
rig’s stereo baseline. Notice that when initializing S , the system does not allocate
any GPU memory for cell c. Meanwhile, given the camera with an initial pose Twc,
the system defines a Grid SDF S as in Fig. 2, where the size of S is (rx,ry,rz).

(a)

x

y

z

O’

d

(b)

Fig. 2: (a) An example of the Grid SDF S . In this example, S has (e.g. (8∗8∗8))
cells in the x, y, z directions. The GPU memory of a cell g in S is not initialized
(gray cells) until there is actual information available corresponding to c (red cells).
(b) An example of the pose of S w.r.t the camera. The z axis of the initial pose of
S starts from the minimum distance of camera range dmin to rz



4 Lu Ma, Juan M. Falquez, Steve McGuire, Gabe Sibley

2.2 Grid Pose Representation
The system uses Pg to represent the global pose of the whole grid, S , with Pg =
(0,0,0) being the world pose of the initial Grid SDF). Pl represents the local pose
of a cell c within the grid. Thus, a cell c in the current camera view can be accessed
by its local index and a voxel within the cell can also be accessed by Pg and Pl .

2.3 System Structure
The following flow chart (Fig. 3) shows the structure of the proposed system.

System initialization Tracking Reconstruction
Device - Host 

Streaming

Input Stereo Images

Ray Casting

Fig. 3: Flow chart of the proposed system. After system initialization, the proposed
system localizes the pose of cameras and incrementally reconstructs the scene with
a rolling SDF scheme. Portions of the scene that are out of the camera view will
be streamed from the GPU memory to the CPU memory (or the hard disk) directly.
Such data can also be merged into a complete mesh via marching cubes.

Initialization The system first initializes a Grid SDF S without allocating any
GPU memory for any cell c in S .

Tracking Given the input stereo data, the system generates the depth images of the
current frame via stereo matching and localizes the camera between the reference
frame Twr and the live frame Twl via dense visual inertial tracking.

Rolling and Streaming Once the system updates the latest world pose of the cam-
era, the system will check if rolling is needed based on the motion of the camera. If
required, the system will stream the data of cells c that are out of the current camera
view from the GPU memory to the CPU memory.

Reconstruction Once streaming is done, the system model can be updated via
SDF fusion. Also, an updated view of the reconstructed scene is obtained via ray
casting.

3 Grid Based SDF Fusion

3.1 Rolling Grid

In large scale outdoor SLAM, it is important to continuously perform mapping while
at the same time reuse the GPU memory of voxels that have been taken out of the
camera view. The proposed system achieves this via a rolling scheme which streams



Large Scale Dense Visual Inertial SLAM 5

the data of cells that are currently out of the camera view into the CPU memory and
reuses the GPU memory of the cells.

To address this problem, we assume the initial pose of the Grid SDF S is the
origin, and S moves with respect to the camera motion. The global pose of S in
the x, y, z directions will increase by 1 if the camera moves +rx,+ry,+rz in the
corresponding direction, and -1 if in the opposite direction.

Meanwhile, under the current camera view, the system can easily access a cell c
of S via its local pose. However, based on the motion of the camera, a cell (e.g. c

′
)

in S may have moved out of the current camera view. To reuse the GPU memory
of cell c

′
for a new cell c

′′
in the current camera view, the system will stream the

data of c
′

from the GPU memory to the CPU memory and reuse the same allocation
for the new cell. In this case, we can no longer access c

′′
via its local index directly

in the current S , implying that the real index of c
′′

will be different from its local
index. Figure 4 shows how the system computes the real index of a cell based on its
local index during rolling.

G

R

I

D

R

O

L

L

G

R

I

D

S

D

F

S

G

R

I

L

G

R

L

L

G

O

L

L

R

O

L

L

(a)

G

R

I

D

S

R

I

D

S

D

L

L

S

D

F

L

S

D

F

S

R

O

L

L

G

R

I

D

S

D

F

S

(b)

G

R

I

D

R

O

L

L

G

R

I

D

S

D

F

S

G

R

I

L

G

R

L

L

G

O

L

L

R

O

L

L

(c)

G

R

I

D

R

O

L

L

G

R

I

D

S

D

F

S

G

R

I

L

G

R

L

L

G

O

L

L

R

O

L

L

(d)

Fig. 4: An example of rolling Grid SDF. The camera is moving in the positive [(a)
and (b)] and negative [(c) and (d)] directions; this example shows how the system
reuses the GPU memory of the previous cells. Here we assume the number of cells
is 4 and the initial scene that the camera sees is the letter sequence GRID. In each
graph, the camera moves in the direction of the arrow. The white cells remain sta-
tionary within GPU memory. The blue cells store the scene that the camera sees
in the current view, while the corresponding previous GPU-located cells have been
streamed to the CPU memory. For example, in (a), column 2, the system sees LGRI
in the current view, streams L from the GPU memory to the CPU memory, and then
reuses the GPU memory location to store the new view L (in blue)

The proposed system performs rolling in a very straightforward way, as shown
in Figure (4). Assume that the initial scene the camera sees is the word ′GRID′.
If the camera moves forward (e.g. Fig. 4 (a)), it will see the letters ′L′, ′L′,′O′,′R′

respectively. Here, each step (the minimum rx/xv,ry/yv,rz/zv) of the camera motion
in a direction is considered a shift in that direction. Each time when the camera
moves forward, the real index of the new cell (e.g. L in the second column of Fig. 4
(a)) will be saved to the cell which just moved out of view, and the corresponding
previous cell (letter D) will be saved to the CPU memory. Now, the local index of L
in the current Grid SDF should be 3, but its real index is 0 instead. The following



6 Lu Ma, Juan M. Falquez, Steve McGuire, Gabe Sibley

pseudocode shows how the system computes reused GPU memory by streaming
cells that are out of the current camera view:

Algorithm 1 Compute the index of cells that needs to be streamed from GPU to
CPU in a given direction (e.g. in the x axis)
Require: shift: s, previous shift: sp, cell index: x, number of cells in one dimension xg, stream

flag: f
Ensure: s != 0 and s < xg and s >−xg

if s > 0 then
if sp ≥ 0andx≥ spandx < sp + s then

f ← true
else if x≥ xg + spandx < xg + sp + s then

f ← true
else

f ← f alse
end if

else
if sp < 0andx≥ xg + sp + sandx < xg + sp then

f ← true
else if x≥ sp + sandx < sp then

f ← true
else

f ← f alse
end if

end if

Meanwhile, once rolling is performed, the real index of a cell can be computed
directly by algorithm 2. Notice the voxel position is the real position of the voxel
(3D point) in the space in the current Grid SDF.

Algorithm 2 Access a voxel in the Grid SDF by the voxel position (e.g. in the x
axis)
Require: shift: s, local index: xl , number of cells in one dimension xv, real index: xr
Ensure: s < xv and s >−xv

if s > 0 then
if xl < xv−1− s then

xr ← xl + s
else

xr ← xl − (xv− s)
end if

else
if xl >−s then

xr ← xl + s
else

xr ← xl + xv + s
end if

end if



Large Scale Dense Visual Inertial SLAM 7

3.2 SDF Fusion

The system updates S by fusing every valid point from the stereo depth map Id into
S once Twc is tracked:

S
′
= F (S , Id ,Twc) (2)

Here, F (·) is the SDF fusion operation. Twc is the world pose of the camera in the
live frame (i.e. current frame). The system also generates a virtual gray image Ig

v
and depth image Id

v by ray casting ϒ(·) [4]:

Iv = ϒ(S ,Twv), Iv = Ig
v ∪ Id

v (3)

where Twv is the pose of the virtual camera.
Notice during fusion, the system will check every valid voxel position in the Grid

SDF and project the voxel to 2D. If there is a valid 2D pixel in the current live image
with a valid depth value, the voxel will be updated (a similar operation also happens
during ray casting).

3.3 Device to Host Streaming

The proposed system automatically streams data from device memory to the host
(CPU) memory if the data present in the Grid SDF is out of the current camera
view. Once the memory block which hold the past SDF in the CPU memory is full,
the system streams data of the cells which has the furthest distance to the current
camera pose from the host memory to the hard disk. See Fig. 5.

Hard Disk

File

Host CPU Memory ArrayDevice GPU Memory

Fig. 5: Host - device streaming pipeline in the system. The blue block in the GPU
memory will be streamed to the host CPU memory array when the data is out of the
camera view and will be saved to the hard disk when the CPU memory array is full.

When the camera moves to a new location, the system checks if the data in the
new location previously exists in the system. If it does, the system will reuse that
memory and load it back from the CPU memory or the hard disk to the GPU mem-
ory. Reloading saved data helps to complete the model of the scene from different
views. Notice that each time a cell file is saved in the host memory or the hard disk,
the system indexes it with a global and local index which allows fast retrieval of



8 Lu Ma, Juan M. Falquez, Steve McGuire, Gabe Sibley

stored cells. Since all the SDF data is stored as individual cell files in the host mem-
ory or the hard disk, the system can merge any portion of the scene of interest into
a mesh, which can be used later for any robotic application.

4 Dense Visual Inertial Tracking
Tracking is performed in a windowed dense visual inertial bundle adjuster. Visual-
only frame-to-frame constraints are transformed into the IMU frame and added into
the bundle adjuster as binary constraints. Inertial measurements between frames are
integrated forming residuals against the estimated poses as seen in Fig. 6. Velocities
and IMU biases are also estimated, and are carried through in the sliding window.

Integrated Inertial Measurements

Tic

y

x

z

y

x

z

y

x

z

y
x

z

y

x

z

y

x

z

Inertial
Trajectory

Camera
Trajectory

Tic

Tic

IMU-Camera
Transform

Relative Binary Constraints

C2
C3

T12

T23

I1

I2

I3

C1

Fig. 6: Binary constraints from the visual tracker and integrated IMU poses, along
with velocities and accelerometer+gyro biases are jointly optimized. The camera to
IMU transform Tic is calibrated offline.

Visual tracking is performed by a Lucas-Kanade [18] style whole-image align-
ment algorithm via the Efficient Second Order Minimization (ESM) technique [19],
and a 6-DOF camera transform is estimated by minimizing the photometric error
(ev) between a reference image and the current live image:

(4)ev = ‖Ilive
(
ϕ
(
T̂lrϕ

−1 (ur,d)
))
− Ire f (ur)‖2.

The pixel ur in the reference frame is back-projected ϕ−1 using the camera cal-
ibration parameters and the associated depth value d obtained by the stereo recon-
struction algorithm. The 3D point is then transferred into the live frame via the
estimated transform, T̂lr, and projected ϕ onto the camera.

The pose covariances from the visual tracking system are then added into the
bundle adjuster, which runs once a sufficient number of frames and inertial mea-
surements are obtained. The covariance of the inertial residual between two consec-
utive frames is dependent on the number of measurements between images, and as
such must be carried forward during the integration process (Fig. 7). Details about
inertial integration and error propagation can be found in [20].



Large Scale Dense Visual Inertial SLAM 9

.. . .
eIn+1

eVn+1
eIn+2

eVn+2




Xwpn

Vwn

bgn
ban







Xwpn+1

Vwn+1

bgn+1

ban+1







Xwpn+2

Vwn+2

bgn+2

ban+2




.

Fig. 7: Errors from the vision system (ev) are formed by compounding the estimated
relative transforms with world poses. Similarly, inertial errors (eI) are formed by
integrating inertial measurements. Uncertainties (shown as ellipsoids) are used to
weigh in residuals for the estimation of the state parameters: world poses comprised
of a translation (p) and rotation (q) vector (Xwp = [pwp qwp]

T ), velocities (Vw), ac-
celerometer biases (ba) and gyroscope biases (bg).

Inertial residuals between the parameters and the integrated state take the form
of:

(5)eI =

∥∥∥∥∥∥∥∥∥∥




pwp − p̂
log
(
q−1

wp ⊗ q̂
)

vw − v̂
bg − b̂g

ba − b̂a




∥∥∥∥∥∥∥∥∥∥

2

,

where (pwp− p̂) is the translation residual, log
(
q−1

wp⊗ q̂
)
∈R3 calculates the rotation

residual in so(3), (vw− v̂) is the velocity residual, and (bg− b̂g) and (ba− b̂a) are
the gyro and accelerometer bias residuals respectively.

A total of 15 parameters per frame are estimated during the sliding window opti-
mization: 6 for pose parameters, 3 for velocities, 3 for accelerometer biases and 3 for
gyroscope biases. Initial velocities as well as the biases are estimated and kept up to
date as the sliding window shifts during execution. Given the size of the sliding win-
dow and the unambiguity of scale from the stereo vision system, no marginalization
or conditioning is done on the sliding window as all parameters are observable.

The inclusion of inertial data enhances visual tracking in general, and in particu-
lar during fast camera movements and low textured areas. The addition of the IMU
also speeds up visual tracking, since the typical coarse-to-fine pyramid scheme used
in visual odometry is no longer required. Instead, the visual tracking is initialized
with an estimated pose given by the integration of inertial measurements from the
last frame up to the point where a new image is captured. In this way, only a refine-
ment in the form of a few iterations at full image resolution is required for the final
pose estimate.



10 Lu Ma, Juan M. Falquez, Steve McGuire, Gabe Sibley

5 Result and Discussions
The proposed system is tested by a hand held camera and a ClearPath Robotics
Husky robot (Fig.8) with two Ximea (MQ013MG-ON) gray scale cameras and a
Microstrain 3DM-GX3-35 Inertial Measurement Unit (IMU). The camera intrinsics
as well as sensor extrinsics are calibrated offline with a method similar to [21], and
the rigid sensor rig is attached to the robot via a T-mount.

(a) (b)

Fig. 8: An example of the system platform. An IMU and a calibrated stereo rig or
an RGB-D camera is mounted on the robot which provides stereo and inertial data
during navigation.

We implement the system using the GPU for the reconstruction pipeline and
using the CPU with Intel Threaded Building Blocks for the visual inertial tracking
pipeline. All the real-world datasets were captured using the stereo camera + IMU
rig. The images were undistorted and scan-line rectified, and were later fed to a
stereo matching technique [14] for depth map generation.

To evaluate the performance of the proposed system, we tested it with a sim-
ulated city-block dataset (15 meters by 15 meters in width and length, containing
approximately 200 frames) with simulated IMU measurements and several real-
world datasets (approx. 40 to 250 meters in length). For the real-world datasets, we
captured a variety of indoor and outdoor scenes under different lighting and weather
conditions (e.g. sunny and snow). To test the robustness of the proposed visual in-
ertial tracking system, we especially test the system in a dark office scene (fig 10)
and in an hallway with very simple geometry (fig 1), where either the traditional
RGB-D approach or an ICP approach would easily fail. During the experiments, we
set the maximum depth of voxels that fuse into the Grid SDF to 15 meters given
the average maximum depth in all the scenes and in order to limit any potentially
erroneous depth data from the stereo matching algorithm.

The dense visual inertial tracker initially performs visual odometry using a coarse
to fine approach via an image pyramid. After a the minimum number of image
frames is acquired, the sliding window kicks in and the image pyramid is no longer
required since the IMU is capable of seeding the visual odometry optimization by
providing a hint of the camera’s pose. The window size used for all experiments was
15, with the minimum number of frames being 10.



Large Scale Dense Visual Inertial SLAM 11

We tested the accuracy of the proposed system with a simulated city block
dataset. When compared against the ground truth depth map, the proposed system
accurately tracks and reconstructs the city block scene with online performance.
The path error is approx. 8cm after 60 meters of camera travel. When using the
depth from the stereo algorithm, the path error is approx. 5cm after the same cam-
era travel. Figure 9 shows the original mesh and the mesh generated by the proposed
system. Notice in the detailed view the drift of the tracking system in the end of the
reconstruction (fig 9(c)) showing the relative loop closure error.

(a) (b) (c)

Fig. 9: An example of the reconstruction result for the simulated city block data. (a)
The original ground truth model. (b) An overview of the reconstruction result. (c)
Close view of the reconstruction result showing loop closure error.

The proposed system also shows effective performance with real-world data.
While the quality of the depth images generated from stereo matching is affected
significantly by different lighting, texture and weather conditions, our system is
capable of successfully reconstructing all large-scale outdoor scenes with high a
quality mesh.

Figure 10 shows the reconstruction result of an indoor office scene (approx. 30m
by 30m) from 6000 stereo frames. The system has a high precision which recon-
structs fine details of objects in the scene.

While visual-only tracking may easily fail in real-world scenes with simple ge-
ometry, low texture or fast motion, the proposed visual inertial tracking shows a
promising tracking result. Figure 1, 11 and 12 show the system successfully track-
ing under several difficult frames where the inertial measurements adjust the visual
tracking result.

In general, the cell representation of the SDF volume massively saves GPU mem-
ory. When testing our simulated and real-world datasets, we set the resolution from
5mm to 25mm based on the dimension of the scene. In general, the proposed system
requires around 650 to 1500 MB GPU memory to store voxels of the current cam-
era view in a large scale scene while the regular SDF uses around 1000 to 3500 MB
GPU memory, due to the fact that in general scenes, most of the voxels are empty.

System Run-Time. We tested our system with a single NVidia TITAN GPU,
Intel i7 quad-CPU desktop, using 640x480 pixel resolution input images and 2.5 cm
resolution of voxels. Table 1 shows our system run-time in different stages. Except
for final mesh generation, the system is capable of online performance.



12 Lu Ma, Juan M. Falquez, Steve McGuire, Gabe Sibley

(a) (b) (c)

(d) (e) (f)

Fig. 10: An example of the reconstruction result for an office scene (approx. 5000
stereo frames (final mesh includes approx. 6 million vertices)) from a hand held
camera (first row) and from the Husky robot (second row).

(a) (b) (c)

Fig. 11: An example of the reconstruction result for an outdoor snow scene from
approximate 5000 stereo frames (final mesh includes approx. 32 million vertices).
(a) A close look at a house in the scene. (b) An overview of the scene mesh. (c) An
overview of the scene texture.

(a) (b)

Fig. 12: An example of the reconstruction result for an outdoor snow yard from
approximate 7000 stereo frames (final mesh includes approxi. 15 million vertices).
(a) A close look of the scene. (b) An overview of the scene mesh.



Large Scale Dense Visual Inertial SLAM 13

Table 1: System run-time

Stereo Matching, 1 frame 15 ms
Tracking (CPU), 1 frame 20 ms
Reconstruction, 1 frame 32 ms
Ray casting 8 ms
Device-Host Streaming 1 cell 0.01 ms
Generate cell to Mesh (e.g. 13 million vertices) 15 s

6 Failure Cases and Limitations
Although the system is robust to many real-world conditions, there are several lim-
itations of our current work. The final reconstruction and tracking results depend
heavily on the quality of the depth images which can be improved by [8]. The re-
construction can also be improved by adding loop closure by changing the local and
global index of cells.

7 Conclusions
We present a large scale dense visual inertial SLAM system based on a rolling grid
fusion scheme. As far as we know this is the first system to combine inertial tracking
in a dense SLAM framework. The proposed system manages the space into small
volume grids and only allocates GPU memory for cells if data exists. A large scale
dense mapping solution is obtained via a rolling grid scheme with simple index
computation while the device and the host memory automatically stream between
each other in order to reuse the GPU memory. Depending on the requirements of
an actual application, the system utilizes stereo cameras in both indoor and outdoor
scenes. The system is tested in several outdoor and indoor scenes under different
lighting (illumination changes), weather (e.g. snow, sunny), and motion conditions
and shows promising results. In conclusion, the main contributions of the paper are:
1) A new large scale outdoor dense mapping system based on stereo data and 2) a
new dense visual inertial dense tracking pipeline. We believe the proposed system
is useful for outdoor scene reconstruction and especially for planning and control of
high-speed ground vehicles.

References

1. A. Nüchter, K. Lingemann, J. Hertzberg, and H. Surmann, “6d slam3d mapping outdoor envi-
ronments,” Journal of Field Robotics, vol. 24, no. 8-9, pp. 699–722, 2007.

2. N. Fioraio and K. Konolige, “Realtime visual and point cloud slam,” in Proc. of the RGB-
D workshop on advanced reasoning with depth cameras at robotics: Science and Systems
Conf.(RSS), vol. 27, 2011.

3. H. Strasdat, A. J. Davison, J. Montiel, and K. Konolige, “Double window optimisation for
constant time visual slam,” in Computer Vision (ICCV), 2011 IEEE International Conference
on. IEEE, 2011, pp. 2352–2359.

4. R. A. Newcombe, A. J. Davison, S. Izadi, P. Kohli, O. Hilliges, J. Shotton, D. Molyneaux,
S. Hodges, D. Kim, and A. Fitzgibbon, “Kinectfusion: Real-time dense surface mapping and



14 Lu Ma, Juan M. Falquez, Steve McGuire, Gabe Sibley

tracking,” in Mixed and augmented reality (ISMAR), 10th IEEE Int. Symp. on, 2011, pp. 127–
136.

5. S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe, P. Kohli, J. Shotton, S. Hodges,
D. Freeman, A. Davison, et al., “Kinectfusion: real-time 3d reconstruction and interaction
using a moving depth camera,” in Proceedings of the 24th annual ACM symposium on User
interface software and technology. ACM, 2011, pp. 559–568.

6. M. Keller, D. Lefloch, M. Lambers, S. Izadi, T. Weyrich, and A. Kolb, “Real-time 3d recon-
struction in dynamic scenes using point-based fusion,” in 3D Vision-3DV 2013, 2013 Interna-
tional Conference on. IEEE, 2013, pp. 1–8.

7. R. A. Newcombe, S. J. Lovegrove, and A. J. Davison, “Dtam: Dense tracking and mapping in
real-time,” in Computer Vision (ICCV), IEEE Int. Conf. on, 2011, pp. 2320–2327.

8. A. Concha, W. Hussain, L. Montano, and J. Civera, “Manhattan and piecewise-planar con-
straints for dense monocular mapping.”

9. M. Zeng, F. Zhao, J. Zheng, and X. Liu, “Octree-based fusion for realtime 3d reconstruction,”
Graphical Models, vol. 75, no. 3, pp. 126–136, 2013.

10. F. Steinbrucker, J. Sturm, and D. Cremers, “Volumetric 3d mapping in real-time on a cpu,” in
Robotics and Automation (ICRA), 2014 IEEE International Conference on. IEEE, 2014, pp.
2021–2028.

11. H. Roth and M. Vona, “Moving volume kinectfusion.” in BMVC, 2012, pp. 1–11.
12. T. Whelan, H. Johannsson, M. Kaess, J. J. Leonard, and J. McDonald, “Robust tracking for

real-time dense rgb-d mapping with kintinuous,” 2012.
13. R. Finman, T. Whelan, M. Kaess, and J. J. Leonard, “Efficient incremental map segmentation

in dense rgb-d maps,” in Robotics and Automation (ICRA), 2014 IEEE International Confer-
ence on. IEEE, 2014, pp. 5488–5494.

14. A. Geiger, M. Roser, and R. Urtasun, “Efficient large-scale stereo matching,” in Computer
Vision–ACCV 2010. Springer, 2011, pp. 25–38.

15. M. Nießner, M. Zollhöfer, S. Izadi, and M. Stamminger, “Real-time 3d reconstruction at scale
using voxel hashing,” ACM Transactions on Graphics (TOG), vol. 32, no. 6, p. 169, 2013.

16. S. Sengupta, E. Greveson, A. Shahrokni, and P. H. Torr, “Urban 3d semantic modelling using
stereo vision,” in Robotics and Automation (ICRA), 2013 IEEE International Conference on.
IEEE, 2013, pp. 580–585.

17. V. A. Prisacariu, O. Kähler, M. M. Cheng, J. Valentin, P. H. Torr, I. D. Reid, and D. W.
Murray, “A framework for the volumetric integration of depth images,” arXiv preprint
arXiv:1410.0925, 2014.

18. S. Baker and I. Matthews, “Lucas-kanade 20 years on: A unifying framework,” International
Journal of Computer Vision, vol. 56, no. 3, pp. 221–255, 2004.

19. S. Klose, P. Heise, and A. Knoll, “Efficient Compositional Approaches for Real-Time Ro-
bust Direct Visual Odometry from RGB-D Data,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), November 2013.

20. N. Keivan and G. Sibley, “Asynchronous adaptive conditioning for visual-inertial slam.” in
International Symposium on Experimental Robotics (ISER), 2014.

21. S. Lovegrove, A. Patron-Perez, and G. Sibley, “Spline fusion: A continuous-time representa-
tion for visual-inertial fusion with application to rolling shutter cameras,” in Proceedings of
the British machine vision conference, 2013, pp. 93–1.


