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Abstract Many applications for robotic systems require the systems to traverse di-
verse, unstructured environments. State estimation with Visual Odometry (VO) in
these applications is challenging because there is no single algorithm that performs
well across all environments and situations. The unique trade-offs inherent to each
algorithm mean different algorithms excel in different environments. We develop a
method to increase robustness in state estimation by using an ensemble of VO al-
gorithms. The method combines the estimates by dynamically switching to the best
algorithm for the current context, according to a statistical model of VO estimate er-
rors. The model is a Random Forest regressor that is trained to predict the accuracy
of each algorithm as a function of different features extracted from the sensory in-
put. We evaluate our method in a dataset of consisting of four unique environments
and eight runs, totaling over 25 minutes of data. Our method reduces the mean trans-
lational relative pose error by 3.5% and the angular error by 4.3% compared to the
single best odometry algorithm. Compared to the poorest performing odometry al-
gorithm, our method reduces the mean translational error by 39.4% and the angular
error by 20.1%.

1 Introduction

Autonomous aerial vehicles are often desired for performing tasks that are danger-
ous or impossible for humans. From urban search-and-rescue missions to remote
exploration of nuclear disaster sites, these tasks often take UAVs to unknown en-
vironments that are challenging due to their diverse and dynamic nature. Among
these challenges is the likely inability of external communication, including limi-
tations on the availability and reliability of GPS data. This requires all perception,
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processing, and decision-making to be made onboard. The unpredictability of the
environment further contributes to the need for a more robust system that is capable
of recovering from unanticipated faults. The infeasibility of considering all possible
exception and errors beforehand has led to research in fault-tolerant control (FTC)
and fault-tolerant perception [16].

Fault-tolerant perception can pose an especially difficult problem due to the vast
diversity of environments that occur in the real world. This diversity means that for
many tasks, a single method is rarely the best in all situations; instead, different
methods excel in different kinds of environments. This phenomenon was shown
in the task of Visual Odometry (VO) by Fang and Scherer [5], who compared the
performance of different VO systems using RGB and depth data. They found that
VO systems that used both kinds of information performed better, on average, than
systems using only depth information. However, in dark or smoky environments,
the depth-only systems would fail significantly less often than the other systems.

This motivates the main contribution of this paper, a practical and flexible frame-
work for fault-tolerant state estimation. The main idea of our framework is to use
an ensemble of algorithms, and dynamically switch between them as the vehicle
moves between environments. Switching is performed by periodically selecting the
algorithm expected to be the most accurate in the current context, according to a sta-
tistical model of the accuracy of each algorithm. The model is trained to predict the
accuracy of the motion estimates of each algorithm as a function of various features
describing different aspects of the environment and vehicle state.

We evaluate our framework in a benchmark with data from two sensors covering
four challenging, real-world environments. As further contributions, this evaluation
empirically shows that:

1. It is possible to improve on the performance (in terms of accuracy and robust-
ness) of the single best algorithm in an ensemble by dynamically switching between
algorithms.

2. Algorithm performance is correlated with observable characteristics of the en-
vironment and vehicle state, so it is possible to predict which algorithm will perform
best in each context from the sensory input.

3. Our proposed switching strategy results in more accurate and robust estimates
than any of the individual VO algorithms.

2 Related Work

Several state estimation methods can report some form of variance or confidence
estimate together with their state estimate, e.g. Censi’s method for ICP [4]. These
variances are often used for soft fusion, e.g. in a Kalman Filter [10]. They can also
be used for fusion. For example, Tomic et al [14] use the self-reported variances of a
stereo odometry algorithm and laser odometry algorithm to switch between them as
the vehicle navigated between indoor and outdoor estimates. Compared to our ap-
proach, these methods have the advantage of not requiring any extra training step;
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however, this comes at a cost in terms of flexibility. These methods cannot take ad-
vantage of extra information our method can incorporate seamlessly. Additionally,
our method does not require running an algorithm to predict its performance; this
can provide significant computational benefits by turning the unused odometry al-
gorithms “off”. Finally, only some specific methods can self-report their variance,
while our method is applicable to any algorithm, whether or not it has this capability.

Leishman et al [12] propose a system that dynamically switches between dif-
ferent odometry methods based on context-dependent variables. The switching is
based on an ad-hoc strategy based on manually selected quality thresholds for each
modality. In contrast, our method uses machine learning to learn this strategy, which
considerably simplifies adapting the method to different environments, sensors or
algorithms.

An algorithm that has several similarities to ours is CELLO [15]. This method
predicts a covariance matrix for each method as a function of past training data. The
covariance matrix is predicted with a nonparametric estimator similar to nearest
neighbors methods. Compared to CELLO, our method makes various choices that
make it simpler and more practical. Instead of predicting a full covariance matrix,
we predict error magnitudes, which are simpler to learn and sufficient in many cases.
We choose a random forest-based regressor, which is faster than and more robust
than nearest neighbor methods [3]. In addition, our evaluation is more exhaustive,
as it has different and more challenging environments.

3 Approach

The system implementing our proposed method can be decomposed into various
components:

Sensor Suite In our framework sensors serve two purposes: to serve as input for
the VO estimates and to capture characteristics of the environment that will allow
the model to predict which algorithm will be the most reliable in any given context.

Algorithm Ensemble Our method requires a set of base algorithms performing
the same task (VO, in this paper). The algorithms should be diverse in terms of their
performance characteristics across different environments.

Features In order to describe aspects of the environment that are potentially
relevant for predicting accuracy, we extract various features from the sensor data
and estimated vehicle state.

Error Prediction Model Using data annotated with ground truth, we train a sta-
tistical regression model to predict the accuracy of each algorithm in the ensemble
from the extracted features.

Switching Planner At each time step, the switching planner selects which algo-
rithm to run based on the predicted accuracy of each method and potentially other
factors, such as computational cost.

We note that there is considerable flexibility in regards to the concrete implemen-
tation of each component. The concrete choices for the VO system proposed in this
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paper are outlined in Figure 1. While this system worked well in our experiments,
this framework easily accommodates variations for each component.

Below we describe selected components in more detail.

Fig. 1: Framework Outline – The adaptive architecture framework allows the
robotic system to switch between different visual odometry methods. To choose
whereto and when to switch between methods, we predict the error associated with
each method given a feature vector extracted from current sensory information and
state.

3.1 Sensor Suite

In the experiments for this work we use two different sensors. The first is a forward-
facing RGB-D sensor, which combines a visible light camera with an active struc-
tured light system to create registered RGB and Depth (RGB-D) images.

The second is a specialized camera for optical flow [7], which faces downwards.
The camera has an attached ultrasonic range sensor to estimate height relative to the
ground.

Between these two sensors we have four channels of information: RGB, depth,
ground optical flow and height relative to the ground. Each of these channels provide
informative and complementary cues about the environment and vehicle state.
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3.2 Algorithm Ensemble

A diverse yet powerful set of algorithms is crucial to maximizing the robustness and
accuracy of our system as a whole. For this work we selected three representative
VO methods, each using different subsets of the data:

Fovis [8] This VO algorithm uses the RGB and depth data from the RGB-D
sensor. It works by detecting sparse keypoints from the RGB image and their 3D
positions relative to the camera using the depth image. Then motion is estimated
by robust matching of keypoints across frames using appearance information and
geometric constraints.

FastICP [1] This method relies solely on depth data. It converts each depth im-
age to a point cloud and estimates motion between frames by registering the point
clouds to a local surface map using point-to-plane Iterative Closest Points (ICP).

Optical Flow [7] This method uses optical flow and height measurements to es-
timate motion. Unlike the other two methods, this method assumes the vehicle main-
tains constant height in each motion.

3.3 Feature Extraction

For each of our sensor modalities we extract multiple features designed to summa-
rize various potentially relevant characteristics of the environment. We chose these
features as they are compact, efficient to calculate and commonly used in the com-
puter vision and point cloud processing literature.

Below we describe each feature according to the type of sensor data it describes;
see Table 1 for a summary. The number corresponding to each feature will also
appear in parenthesis with the description of that feature in the following text.

3.3.1 RGB Image Features

Note that as we do not expect color to be a discriminative feature in this context, we
convert images to grayscale before further processing.

Luminance (9) We expect the luminance of the environment to be a useful pre-
dictor of algorithm accuracy, as methods that rely on RGB information will likely
fail in dark environments. We use the Mean Intensity (9) of the grayscale image as
a simple estimate of luminance.

Corners (2, 3) Keypoint-based algorithms such as Fovis rely on the presence
of corner-like features in the environment; therefore, the quantity of these features
may be a good predictor of the success of these algorithms. While we could use the
results of Fovis’ own corner detection step, this would entail running Fovis itself,
and one of our goal’s objectives is to reduce computation by only running algorithms
we will use. Instead we simply run two corner detector algorithms from OpenCV,
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Table 1: Image features in the feature vector will be referred to according to the
numbers in this table. ∗ indicates a GLCM statistic.

RGB Image Depth and Point Cloud State

1. Contrast∗ 10. Contrast∗ 18. Translational Velocity
2. Harris Corners 11. Correlation∗ 19. Angular Velocity
3. Shi Tomasi Corners 12. Valid Depth Ratio
4. Correlation∗ 13. Energy∗

5. Edge Ratio 14. Homegeneity∗

6. Energy∗ 15. Linear-ness
7. Entropy 16. Scattered-ness
8. Homogeneity∗ 17. Surface-ness
9. Mean Intensity

the Harris (2) and Shi-Tomasi (3) detectors and include the number of corners from
each as in the feature vector.

Edges (5) The presence of strong intensity edges is correlated with certain kinds
of environments; for example, a cluttered indoor scene will probably have a larger
number of edge pixels than an empty hallway. Hence we include the number of
Sobel Edge (5) pixels in each image in the feature vector.

Texture (1, 4, 6-8) The presence of salient intensity textures in an environment
may aid in the extraction and tracking of keypoints, and is also a strong cue to dis-
tinguish physical environments (for example, outdoors and indoor scenes have very
different textures). To succinctly describe image texture we include the entropy (7)
of each image, calculated using a histogram of the 256 possible intensity values, and
features extracted from the gray-level co-occurrence matrix (GLCM) [6] of the im-
age over four different angles (0◦, 45◦, 90◦, and 135◦). The GLCM counts how often
every possible combination of gray-level pixel values occurs next to each other, and
statistics of this matrix are popular texture features. The statistics we use are contrast
(1), correlation (4), energy (6) and homogeneity (8).

3.3.2 Depth Features

Valid depth ratio (12) Our RGB-D sensor reports depth as a 16-bit image in
which pixels are set to a special value if depth estimation is unsuccessful, deeming
them invalid. If a large amount of the depth image is invalid, likely meaning it was
out of range of the depth sensor, then any method using depth information may not
be reliable. To quantify this we include the Valid Depth Ratio (12) of each depth
image was computed to estimate the amount of information in that image.

Saliency (15-17) The three-dimensional shape of the environment may be a use-
ful predictor of algorithm performance. For example, it might distinguish between
environments that are underconstrained in depth information – particularly long,
clear corridors – and environments that have several interesting depth features to
track. To capture this we compute global saliency features [11], a coarse but efficient
measure of shape. These features operate on point clouds, so we first project the
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pixels with valid depth to a 3D point cloud {Xi}= {(xi,yi,zi)
>}N

i=1. A 3×3 covari-
ance matrix ∑

N
i=1(Xi− X̄)(Xi− X̄)>/N is computed, λ0, λ1, λ2 are extracted, such

that λ0 ≥ λ1 ≥ λ2. The three saliency features of the pointcloud are the scattered-
ness fscatter = λ2 (16), the linear-ness flinear = λ0− λ1 (15), and the surface-ness
fsurface = λ1−λ2 (17).

Depth Texture (10, 11, 13, 14) GLCM statistics, as described for the RGB tex-
ture features, were also extracted from the depth image.

3.3.3 State Features

The velocity, as reported by the visual odometry algorithms, was also included in
the feature vector. Specifically, the magnitudes of both the translational (18) and
angular (19) velocities of the currently active odometry method were used as fea-
tures. This was added as a possible predictor for motion blur, which could affect the
performance of visual odometry algorithms.

3.4 Error Prediction Model

The task of the error prediction model is to predict the trajectory errors of each
algorithm at each time step given the feature vector described in the last section.

We formulate the problem as a regression problem, for which various methods
may be used. Below we describe our chosen methodology.

Error Evaluation The output of our algorithm is an prediction of the trajectory
errors each algorithm will make. We chose a metric based on the relative pose error
(RPE) at a given time, described by [13] for VO evaluation. RPE measures the local
accuracy of a trajectory, as compared to a ground truth trajectory, over a specified
time interval. This measures how far the trajectory drifts in the given time interval.

Ei :=
(
Q−1

i Qi+∆

)−1 (P−1
i Pi+∆

)
(1)

Equation (1) calculates RPE at time step i, over the time interval ∆ . Here Q refers
to the ground truth path and P refers to the estimated trajectory. In all experiments
in this paper we use a time interval of ∆ t = 2 s.
As predicting structured matrices in nontrivial, instead we choose to predict two
scalar quantities: the translational error, extracted from (1) as the Euclidean norm
of the translational portion of Ei, and the angular error, extracted as the absolute
value of the angle of rotation from the rotation matrix portion of Ei.

Error Prediction To predict the trajectory errors given the feature vector, we
proceed as follows. First, we learn an independent regression model for each method
and for each type of error (translational and angular). While joint prediction of the
errors could potentially be more accurate, performing the predictions independently
allows us to use virtually any off-the-shelf regression algorithm. Another advantage
of using several different regressors instead of a joint regressor is that VO methods
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can easily be added to the algorithm ensemble without affecting regression models
that have already been learned.
Regression was used instead of the potentially simpler classification. One advantage
of regression over classification is that we are able to determine the magnitude of
an error before switching away from a method. Regression commits less strongly to
which method might be the least accurate at any time. Regression gives us more nu-
anced information that allows more informed decisions. For example, if two meth-
ods are performing well, classification may indicate to frequently switch between
the two. With regression, we may be able to determine that the cost of switching is
not worth the slight decrease in error.
For the regression model we choose Random Forests (RF) [2]. The RF algorithm
is an ensemble learning method that contains many decision trees, each contribut-
ing a vote towards an answer. We chose to use RF compared to other regression
algorithms because random forests are efficient, robust, and empirically among the
most accurate algorithms in many problems [3]. They are also able to predict feature
importance.

3.5 Switching Planner

Decision Method We obtain both translational and angular error from evaluat-
ing the RPE as above. We considered two methods of combining angular and trans-
lational error to decide which visual odometry method to use. These two methods
are shown in 2 and 3. Here ετ

i is the translational error for method i, and εα
i is the

angular error for method i.

method = argmin
i

(ετ
i ε

α
i ). (2)

method = argmin
i

(βε
τ
i + ε

α
i ). (3)

Ultimately we decided to use the additive metric, as in equation 3, with β = 0.5.
This showed a larger decrease in both translational and angular error than metric 2,
or the metric 3 for for either β = 0.25 or β = 1.

Greedy Switching Planner We aim to improve VO estimation without greatly
increasing the computational cost, as it is important for our method to run online.
Therefore, it is important that we do not run multiple odometry methods in paral-
lel, as that can be very computationally expensive. As Fovis relies on keyframes for
motion estimation, and our depth-only method relies on building a map from previ-
ous point clouds, it would introduce error into the system to instantaneously switch
from one method to another.

We therefore allow three image frames of overlap between the two visual odome-
try methods, during which both methods would be making motion estimates. We do
not use the newly started visual odometry method until the overlap is completed. A
more complicated switching planner may be implemented, possibly by considering
the benefit of switching before committing to a switch.
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4 Experiments

Datasets We test our framework in a variety of conditions that would be chal-
lenging for any individual algorithm. We looked specifically at four different envi-
ronments. The basement datasets were taken in a dark, cluttered hallway (see Fig-
ure 2a). This environment is particularly challenging for any algorithm relying on
light-dependent RGB images or the limited optical flow information available. The
hallways datasets were taken in an area with brightly lit, blank hallways that may
be challenging for algorithms relying on depth information (see Figure 2b). A depth
cloud will be underconstrained, and therefore forward motion may be difficult to de-
tect. The spacious environment included a large spacious room in which few depth
features are available due to the limited range of the depth sensor (see Figure 2c).
Lastly, the cluttered datasets were taken in an area with many objects detectable in
both depth and RGB images (see Figure 2d).
We extract the feature vector and predict the VO error in real time, and switch be-
tween algorithms based on the predictions. For this paper, we trained RF regressions
using one complete, > 60 s dataset from each of the four environments and tested
on the remaining four datasets, again one from each environment.

Ground Truth Because we wanted data from a variety of environments, the use
of motion capture systems was infeasible. Instead, localization was performed on the
datasets, matching the depth point cloud with dense 3D maps of the environment.
However, due to the challenging nature of these environments, localization failed
in many cases. In order to get a close estimation of ground truth, points of the path
that were accurately localized were manually selected. These points were then used
as landmarks for the path. The most accurate odometry method for that dataset was
then smoothed using iSAM [9].

4.1 Feature Importance

The importance of each variable in the feature vector can be estimated during the
training process of a random forest. We also collected information on the compu-
tation time for each feature. Computation time and variable importance were com-
pared to determine if any features were not worthwhile to compute. In Figure 3, the
maximum importance across all six forests for each variable is plotted against the
variable computation time. We see that the mean intensity of the RGB image has a
higher maximum importance than the other features and relatively low computation
time. It is also clear that the corner detection methods are the most time-consuming
and only of moderate importance. However, the computation time remained under
3 ms for these features, which is within the limits given by the image frequency of
15 Hz. Therefore, we kept all features while moving to the next step.



10 Kristen Holtz, Daniel Maturana, and Sebastian Scherer

(a) Basement Environment – RGB (Left) and Depth (Right) Images

(b) Hallways Environment – RGB (Left) and Depth (Right) Images

(c) Spacious Environment – RGB (Left) and Depth (Right) Images

(d) Cluttered Environment – RGB (Left) and Depth (Right) Images

Fig. 2: Environment Examples – Four different, unique indoor environments were
explored. Sample RGB and depth images are shown.
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Fig. 3: Feature Importance – The importance of each feature is an estimation of
how much it affects the accuracy of the random forest regression. The numbers
refer to the features as numbered in Table 1. The features in red highlight some of
the more important features.

4.2 Evaluation of Random Forest and Switching Performance

After training, we compared the trajectory error predicted by the random forest re-
gression to the trajectory error previously extracted for training. We measure the
effectiveness of our method by evaluating the RPE of the resultant path of switch-
ing, particularly in comparison with the lowest error odometry method.

Our results are detailed in Tables 2a and 2b. Here the RMS, maximum, and fail-
ure rate (FR) of the translational component of the RPE of each of the trajectories
are compared. The same statistics on the angular component of the RPE is shown in
Tables 3a and 3b. Here, the ideal path is generated by making the correct selection
(according to Eqn. 2) at each point, using the true, extracted RPE. The switching
path is generated using the architecture we have described thus far. In these tables
(2 and 3), the RMS RPE is shown as a percentage of the RMS of the ideal path’s
RPE. The maximum of each path is the largest percentage increase in RPE over
the ideal path’s RPE over all time points. The FR of each path is the fraction of
data points for which RPE exceeds a given threshold. For translational error, this
threshold is 1 m; for angular error it is 0.5 rad.

Our method is able to improve robustness to large faults in VO. This is demon-
strated by both the maximum and failure rate metrics. The switching method almost
always has the lowest rate of failure, and often avoids the largest maximums in error
that correspond to large failures in the VO estimation.

Our data also shows that overall our method is able to improve accuracy by im-
proving the RMS relative pose error. However, our method does not always outper-
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Table 2: Translational Error – We compare translational relative pose error (RPE)
of our method against raw odometry output to determine if the random forest regres-
sion can predict RPE in a useful way. The RMS error is represented as a fraction of
the RMS error of the ideal path. The Max. error is chosen as the largest % increase
over the ideal path’s error and is also represented as a fraction of the ideal. The
failure rate (FR) is the fraction of data points for which the RPE exceeds a certain
threshold. For translational error this threshold is 1 m.

(a) Training Data

Dataset Data Switching FastICP Fovis Opt. Flow
Basement RMS 1.09 1.40 1.14 1.97
(136 s) Max. 5.43 27.38 5.43 18.95

FR 0.04 0.16 0.05 0.44
Hallways RMS 1.49 4.40 2.32 0.93
(235 s) Max. 25.58 172.34 90.30 8.77

FR 0.00 0.12 0.00 0.00
Spacious RMS 1.04 1.84 1.04 1.51
(305 s) Max. 11.82 34.67 11.82 18.75

FR 0.03 0.30 0.03 0.12
Cluttered RMS 1.08 1.63 1.08 2.75
(106 s) Max. 10.95 11.45 10.95 168.62

FR 0.01 0.05 0.01 0.05

Overall RMS 1.07 1.86 1.14 1.75
Max. 25.58 172.34 90.30 168.62
FR 0.02 0.20 0.03 0.15

(b) Testing Data

Dataset Data Switching FastICP Fovis Opt. Flow
Basement RMS 1.15 1.84 1.13 2.49
(130 s) Max. 24.06 24.06 15.04 15.46

FR 0.04 0.19 0.04 0.59
Hallways RMS 1.51 3.31 1.85 1.10
(244 s) Max. 15.32 34.21 15.74 3.88

FR 0.02 0.10 0.03 0.00
Spacious RMS 1.04 1.80 1.04 1.41
(257 s) Max. 9.01 39.19 9.01 6.11

FR 0.02 0.56 0.02 0.27
Cluttered RMS 1.14 1.06 1.14 1.10
(93 s) Max. 12.08 11.93 12.08 67.45

FR 0.41 0.36 0.41 0.36
Overall RMS 1.11 1.76 1.13 1.55

Max. 24.06 39.19 15.74 67.45
FR 0.07 0.34 0.07 0.28

form the best individual odometry method. Notably, our method fails to outperform
optical flow odometry in translational or angular RPE for either dataset, training
or testing, of the hallways environment. One possible explanation is that this envi-
ronment was not sufficiently distinguished from others in the feature space. Future
work will include analyzing the difference between these environments in the fea-
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Table 3: Angular Error – Angular error is represented here as translational error is
in Table 2. The threshold used to calculate the failure rate (FR) was 0.5 rad.

(a) Training Data

Dataset Data Switching FastICP Fovis Opt. Flow
Basement RMS 1.53 1.51 1.77 1.23
(136 s) Max. 18.35 22.23 18.35 21.46

FR 0.06 0.04 0.07 0.01
Hallways RMS 1.08 1.39 1.32 1.08
(235 s) Max. 77.87 82.88 77.87 10.36

FR 0.00 0.04 0.04 0.01
Spacious RMS 1.01 1.54 1.01 1.62
(305 s) Max. 28.96 20.94 28.96 32.41

FR 0.01 0.06 0.01 0.07
Cluttered RMS 1.09 1.21 1.09 3.89
(106 s) Max. 5.89 5.20 5.89 60.40

FR 0.02 0.03 0.02 0.22

Overall RMS 1.13 1.46 1.25 1.68
Max. 77.87 82.88 77.87 60.40
FR 0.02 0.04 0.03 0.06

(b) Testing Data

Dataset Data Switching FastICP Fovis Opt. Flow
Basement RMS 1.22 1.06 1.30 1.13
(130 s) Max. 11.87 9.50 11.87 9.07

FR 0.05 0.01 0.08 0.03
Hallways RMS 1.15 1.23 1.19 1.08
(244 s) Max. 13.73 14.48 13.73 3.26

FR 0.03 0.04 0.02 0.04
Spacious RMS 1.06 1.26 1.05 1.33
(257 s) Max. 11.46 157.67 11.46 79.82

FR 0.04 0.10 0.03 0.13
Cluttered RMS 1.01 1.07 1.01 1.16
(93 s) Max. 22.74 29.48 22.74 70.82

FR 0.15 0.18 0.15 0.18

Overall RMS 1.10 1.19 1.12 1.22
Max. 22.74 157.67 22.74 79.82
FR 0.05 0.07 0.05 0.09

ture space and exploring potential new features that may aid distinguishing different
environments.

5 Conclusions

In this paper we presented a method to robustify visual odometry by switching be-
tween algorithms based on the environment. By learning the error associated with
sensory information through regression, this method aims to reduce visual odome-
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try errors. The current results are promising in improving state estimation in various
indoor environments, and particularly in avoiding large failures.

In future work, we would like to explore different methods in each component of
the framework, and evaluate how they affect performance; for example, by adding
more sensors and odometry algorithms, or jointly learning the features and the error
prediction model.

References

1. Besl, P., McKay, N.D.: A method for registration of 3-D shapes. IEEE TPAMI 14(2), 239–256
(1992)

2. Breiman, L.: Random Forests. Machine learning 45(1), 5–32 (2001)
3. Caruana, R., Niculescu-Mizil, A.: An empirical comparison of supervised learning algorithms.

In: ICML, pp. 161–168 (2006)
4. Censi, A.: An accurate closed-form estimate of ICP’s covariance. In: ICRA, pp. 3167–3172

(2007)
5. Fang, Z., Scherer, S.: Experimental study of odometry estimation methods using RGB-D cam-

eras. In: IROS, pp. 680–687 (2014)
6. Haralick, R.M., Shanmugam, K., Dinstein, I.H.: Textural features for image classification.

IEEE Transactions on Systems, Man and Cybernetics (6), 610–621 (1973)
7. Honegger, D., Meier, L., Tanskanen, P., Pollefeys, M.: An open source and open hardware

embedded metric optical flow cmos camera for indoor and outdoor applications. In: ICRA,
pp. 1736–1741 (2013)

8. Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: Visual
odometry and mapping for autonomous flight using an RGB-D camera. In: International
Symposium on Robotics Research (ISRR), pp. 1–16 (2011)

9. Kaess, M., Ranganathan, A., Dellaert, F.: iSAM: Incremental smoothing and mapping. IEEE
Transactions on Robotics 24(6), 1365–1378 (2008)

10. Kalman, R.E.: A new approach to linear filtering and prediction problems. ASME Journal of
Basic Engineering (1960)

11. Lalonde, J.F., Vandapel, N., Huber, D.F., Hebert, M.: Natural terrain classification using three-
dimensional ladar data for ground robot mobility. Journal of Field Robotics 23(10), 839–861
(2006)

12. Leishman, R.C., Koch, D.P., McLain, T.W., Beard, R.W.: Robust visual motion estimation
using RGB-D cameras. In: AIAA Infotech Aerospace Conference, pp. 1–13 (2013)

13. Sturm, J., Engelhard, N., Endres, F., Burgard, W., Cremers, D.: A benchmark for the evaluation
of RGB-D SLAM systems. In: IROS, pp. 573–580. IEEE (2012)

14. Tomic, T., Schmid, K., Lutz, P., Domel, A., Kassecker, M., Mair, E., Grixa, I.L., Ruess, F.,
Suppa, M., Burschka, D.: Toward a fully autonomous UAV: Research platform for indoor
and outdoor urban search and rescue. IEEE Robotics & Automation Magazine 19(3), 46–56
(2012)

15. Vega-Brown, W., Bachrach, A., Bry, A., Kelly, J., Roy, N.: CELLO: A fast algorithm for
covariance estimation. In: ICRA, pp. 3160–3167 (2013)

16. Zhang, Y., Chamseddine, A., Rabbath, C., Gordon, B., Su, C.Y., Rakheja, S., Fulford, C.,
Apkarian, J., Gosselin, P.: Development of advanced FDD and FTC techniques with applica-
tion to an unmanned quadrotor helicopter testbed. Journal of the Franklin Institute 350(9),
2396–2422 (2013)


