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Abstract In order for vision-based navigation algorithms to extend to long-term au-
tonomy applications, they must have the ability to reliably associate images across
time. This ability is challenged in unstructured and outdoor environments, where
appearance is highly variable. This is especially true in temperate winter climates,
where snowfall and low sun elevation rapidly change the appearance of the scene.
While there have been proposed techniques to perform localization across extreme
appearance changes, they are not suitable for many navigation algorithms such as
autonomous path following, which requires constant, accurate, metric localization
during the robot traverse. Furthermore, recent methods that mitigate the effects of
lighting change for vision algorithms do not perform well in the contrast-limited
environments associated with winter. In this paper, we highlight the successes and
failures of two state-of-the-art path-following algorithms in this challenging envi-
ronment. From harsh lighting conditions to deep snow, we show through a series of
field trials that there remain serious issues with navigation in these environments,
which must be addressed in order for long-term, vision-based navigation to succeed.

1 Introduction

Appearance-based localization and mapping algorithms have enabled mobile robots
to navigate autonomously through their environments using inexpensive, commer-
cial sensors. This is appealing in that it opens the door for many exciting applications
such as autonomous motor vehicles, search-and-rescue robots, and hazardous explo-
ration robots. However, in order for these applications to succeed, robots must have
the ability to navigate reliably through their environments over long periods of time.
This poses a serious problem in outdoor environments where lighting, weather, and
seasonal changes quickly alter the appearance of the scene.

e-mail: {mpaton,francois.pomerleau}@robotics.utias.utoronto.ca,tim.barfoot@utoronto.ca
University of Toronto Institute for Aerospace Studies, Toronto, Ontario, M3H 5T6, Canada

1



2 Michael Paton, François Pomerleau, and Timothy D. Barfoot

This problem is exacerbated in winter and polar environments where the appear-
ance of the scene has the potential to change on a daily basis. The low elevation of
the sun and short time between sunrise and sunset cause drastic changes in lighting.
Light snow forms small patches of texture that melt on sunny days, while heavy
snow blankets the environment in a featureless landscape as well as causing is-
sues for path-tracking controllers. Some of these difficulties were recently observed
during a field trial in the Canadian High Arctic. In August 2014, our autonomous
path-following code was deployed to Alert (Nunavut, Canada) in collaboration with
Defence Research and Development Canada (DRDC) (Figure 1). Results were un-
satisfactory due in part to the difficult environment.

Fig. 1 Multi-Agent Tacti-
cal Sentry (MATS) vehicle
performing autonomous path
following in Alert (Nunavut,
Canada). Polar environments
cause issues for vision-based
systems such as ice, snow, and
24-hour sunlight with a peak
elevation of 12 degrees. This
leads to unsatisfactory re-
sults for current vision-based
systems.

Environments with highly variable appearance are especially difficult for appli-
cations that require vision-in-the-loop navigation. This specific task requires the
vision system to provide constant, accurate, metric localization to the control loop
to keep the robot driving. An example of a such a system is Stereo Visual Teach &
Repeat (VT&R) [4], an autonomous path-following algorithm that navigates using
vision. Proposed solutions for localization across appearance change either provide
only topological localization [10, 11], require offline collection of the scene in mul-
tiple appearances [2, 9], or have under-performed in winter environments [14]. In
this paper, we classify some of the difficulties associated with autonomous path fol-
lowing in winter environments and test the limits of two of our VT&R algorithms
[14, 15] in two challenging winter field trials. We also discuss issues that need to be
overcome to provide reliable, long-term, outdoor navigation using vision.

The remainder of this paper is outlined as follows. Work related to vision in
feature-limited environments and localization across appearance changes is pre-
sented in Section 2. Brief details of the two tested VT&R systems are discussed
in Section 3. Field trials, environmental information, and evaluation metrics are
described in Section 4. Results are presented in Section 5. Lessons learned and
challenges related to winter field deployments are discussed in Section 6 before
concluding the paper.
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2 Related Work

This paper presents the performance of autonomous path-following techniques in
winter environments that are especially difficult for vision algorithms. These en-
vironments are difficult for a variety of reasons: snow accumulates and melts at a
rapid pace, visual feature detectors do not fire on contrast-free snow, and low sun-
elevation accelerates the effects of lighting change, to name a few.

Motion estimation through Visual Odometry (VO) is typically not affected by ap-
pearance change, but can suffer in these feature-limited environments. Williams and
Howard [17] apply Contrast Limited Adaptive Histogram Equalization (CLAHE) to
increase feature matches in images with snowy foregrounds. They show an increase
in feature match count by an order of magnitude. Operating in feature-limited, vol-
canic fields, Otsu et al. [13] extract and track different features depending on the
terrain, they show an improvement in feature count and computation speed.

Lighting change is typically the first issue seen by vision-based localization sys-
tem with regard to appearance change. Color-constant images, which are partially
invariant to lighting conditions [16], have recently been used to great success in vi-
sion algorithms. Corke et al. [3] show an improvement in place recognition across
lighting changes using these images. McManus et al. [8] localize by switching be-
tween greyscale and color-constant images. They show improved results on a chal-
lenging dataset with significantly different lighting conditions.

While these techniques help overcome issues with lighting, general appearance
change over time remains an issue. Naseer et al. [11] align sequences of images
through a probabilistic network flow problem. Churchill and Newman [2] treat lo-
calization failures as new experiences and build a system of parallel localizers. Neu-
bert et al. [12] build a dictionary that encodes the transformation of a scene between
winter and summer. McManus et al. [9] train custom features that describe a specific
element of the scene. While these methods are capable of localizing across appear-
ance changes, they are not suitable for applications that require vision-in-the-loop
navigation, such as autonomous path following. Some methods only provide topo-
logical localization [11], while others require that examples of the scene in multiple
appearances are manually collected prior to reliable operation [9, 12, 2].

The autonomous path-following algorithms presented in this paper are built upon
the Stereo VT&R work presented by Furgale and Barfoot [4]. Because this system
navigates by comparing visual features from greyscale images, it is highly suscep-
tible to lighting change. This can be overcome by using an active sensor. McManus
et al. [7] perform VT&R using keypoints formed from lidar-generated intensity im-
ages and range data. While it is invariant to lighting conditions, it suffers from mo-
tion distortion issues. Krüsi et al. [6] perform autonomous path following through
dense, point-cloud registration at the cost of potential failure cases in open spaces
that lack geometric information. Vision-based path-following algorithms do not
share these limitations, but are less stable in terms of appearance change. This paper
examines the performance of the legacy system [4] as well as two improvements
to the VT&R algorithm [14, 15] that attempt to mitigate the effects of appearance
change. These are presented in further detail in the following section.
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3 VT&R Solutions

As an application context for visual navigation, we selected three previously pub-
lished variants of VT&R solutions labeled here: Legacy [4], Color-Constant [14],
and Multi-Stereo [15]. The details of these solutions are fully described and eval-
uated in their respective publications. Therefore, we only introduce them at a high
level and point out the main differences. Figure 2 overviews the processing pipeline
for each solution. A key element to compare is the number of images required for
each pipeline, which gives an idea of the computation power required to track the
robot position. The color-constant solution is the most expensive with three inputs,
but remains within the range of real-time computation [14].
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Fig. 2: Localization pipelines for the different stereo VT&R systems under investigation. The input
to the system is a left/right RGB stereo image pair. The output is a pose estimate relative to a small
subsection of the map (localization) and a pose estimate relative to the last image (VO). Incoming
stereo images are first converted to different sources (i.e., greyscale, Invariant 1, and/or Invariant
2). Keypoints are extracted from each image source independently. Those keypoints are matched
left-to-right for each respective image source to obtain depth for each feature. The 3D keypoints are
then matched to a small subsection of the map to obtain feature correspondences between the live
keyframe and the map keyframe. The grey box named Tracking is the same for all three solutions.

1) Legacy VT&R: This appearance-based path-following system is built upon
the generation and tracking of keypoints, SURF [1] features with 3D position and
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uncertainty. Keypoints calculated from a stereo pair are organized into a keyframe.
In the teaching phase, a robot is manually driven along a path while building a
pose graph of keyframes connected by relative transformations. To repeat the path,
the live keyframe, the collection of keypoints observed from the live stereo pair is
matched to a map keyframe, a small subset of keyframes from the teach map relaxed
into a single privileged coordinate frame. Data associations found between the live
and map keyframe are used to obtain an estimate of the pose relative to the path,
which is used to control the robot. The localization pipeline for this algorithm is
illustrated in the upper section of Figure 2.

2) Color-Constant VT&R: Inspired by recent developments in the research area
of color constancy, this stereo VT&R algorithm aims at increasing robustness
against changes in lighting conditions. Color constancy is the ability to perceive
the color of objects as constant under varying illuminations. Changes in the light-
ing of a scene is a major problem for appearance-based, localization algorithms that
use passive sensors. This stereo VT&R pipeline is an autonomous path-following
algorithm that is capable of handling significant lighting changes in a variety of out-
door environments. By expanding on the idea introduced by McManus et al. [8], the
algorithm combines the accuracy of greyscale images with the robustness of color-
constant images to achieve superior localization. This algorithm is identical to the
Legacy system, with the exception of the generation of a set of two color-constant
images that are partially invariant to lighting conditions. The localization pipeline
is depicted in the middle section of Figure 2. Note that tracked keypoints from each
image source are fused to a single pose estimate.

3) Multi-Stereo VT&R: Through multiple field deployments of Color-Constant
VT&R, it was observed that failure situations were primarily due to a lack of suc-
cessfully matched visual features in the environment. In the Alert field trial, we ob-
served the camera pointing directly at the sun, causing glare. The probability of sun
glares augments during the winter as the sun stays low on the horizon. The Multi-
Stereo solution uses a second camera pointing behind the robot in order to augment
the general number of matches and reduce the impact of glare. This pipeline is
very similar to the Color-Constant solution, with the exception that image sources
are coming from different cameras instead of multiple versions of the same image.
Point clouds from all cameras are transformed into one common coordinate frame
to obtain a single pose estimate. The localization pipeline is presented in the lower
section of Figure 2.

4 Methodology

As the goal of this paper is to quantify difficulties in harsh conditions, and not
to introduce new algorithms, we describe here the datasets and evaluation metrics
we explored to quantify the impact of extreme environments on visual navigation.
Throughout all the experiments, two components were kept stable: 1) the hard-
ware and 2) the sky condition. The robot used is the Grizzly RUV from Clearpath
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Robotics, displayed in different environments in Figure 3. The Grizzly is equipped
with a payload that includes a suite of interoceptive and exteroceptive sensors. For
the purpose of this evaluation, only the stereo cameras were used. More precisely,
localization and mapping relied solely on forward and/or rear facing PGR Bumble-
bee XB3 stereo cameras. All experiments were executed outdoors under clear sky
conditions (i.e., few or no clouds with the sun casting hash shadows on the ground).

4.1 Datasets

Three datasets demonstrate the impact of winter on visual navigation systems. As
a nominal scenario, we included a summer experiment recorded at the Canadian
Space Agency (CSA) on the Mars Emulation Terrain. We also conducted a set of
trials in a Meadow and a field covered by Snow surrounding the campus of the
University of Toronto Institute for Aerospace Studies (UTIAS) with the purpose
of testing the limits of vision-based navigation algorithms in challenging winter
environments. Displayed in Figure 3, the two winter environments consisted of open
fields with trees and buildings on the horizon, with and without the presence of
heavy snowfall.

Fig. 3: Examples of winter environments that are challenging for vision-based navigation systems.
Left: Winter meadow consisting of dead vegetation, sparse snow patches, and trees at the horizon.
Right: Open field with deep snow cover.

1) Canadian Space Agency (CSA): This kilometer-long dataset was recorded dur-
ing the summer of 2014 in the CSA Mars Emulation Terrain and its surrounding
forest. Key components of the environment include a balance of desert, marsh and
forest. A continuous trajectory was recorded through those different biomes and
autonomously repeated 26 times over the period of four days between sunrise and
sunset in late May. We consider this dataset as our nominal scenario in terms of
environment complexity and use it for comparison against winter scenarios. More
details about this dataset can be found in the work of Paton et al. [14].

2) Winter Meadow: This dataset was designed to test our system’s robustness
against lighting change and sun-stare in a challenging environment. The recording
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occurred in the early winter, before large snow storms covered the entire landscape.
Displayed in Figure 3-Left, this environment consists of a large field containing dead
vegetation and sparse snow patches surrounded by trees and buildings in the back-
ground. This environment is difficult for vision systems for a number of reasons: (i)
the dead vegetation is uniform in color and often matted to the ground, producing
little contrast, (ii) tall grass moves with the wind, resulting in feature matches that
are inconsistent to the movement of the robot, (iii) small patches of snow shrink
and change shape as they melt, (iv) the low elevation of the sun accelerates lighting
change between traverses and is often directly in the camera’s field of view, which
significantly changes the exposure of the image. This field trial proceeded by teach-
ing an approximately 100 m loop through this environment. The path was taught
when the sun was at its highest elevation point. The robot autonomously repeated
the path six times between 15:20 and 16:50 when the sun was setting (i.e., sunset
happens much earlier during winter).

3) Snowy Landscape: This dataset was designed to test our system’s robustness
against autonomous navigation through snowy environments. Snow is an especially
difficult environment for vision-based systems as it is practically contrast free, caus-
ing a lack of visual features in most of the scene. Snow cover changes shape quickly
as well. It accumulates, melts, turns to ice and can be blown by the wind changing
the shape of the ground within minutes. Snow is also highly reflective; on sunny
days this can lead a camera’s autoexposure to generate images that are overexposed.
An example of this environment can be seen in Figure 3-Right, where the Grizzly is
traversing through a snow covered field. A 250 m path was manually driven through
a large field with fresh snow cover as a teaching pass. During the teach, the sun was
at its highest point in the sky, causing significant overexposure of the camera. The
path was autonomously repeated approximately three hours later, when the eleva-
tion of the sun was significantly different. The complexity of the deployment and
hardware limitations during this cold and windy day lead to a smaller number of re-
peats compared to the other dataset. Nonetheless, it is enough to draw a comparison
with other environments and initial conclusions about winter deployments.

4.2 Evaluation Metrics

To evaluate the impact of extreme conditions on visual navigation, we selected three
quantitative metrics: Feature Quantity, Feature Uncertainty, and Feature Sparsity.
In this section, we describe these metrics and analyze examples from a nominal
scenario (i.e., CSA dataset), which will be used as foundations for the discussion of
results in Section 5.

1) Feature Quantity: This is a notion of the amount of total inlier matches ob-
served at any point in time between the live keyframe and the map keyframe during
an autonomous traverse. Over the course of a day, this number is guaranteed to de-
crease with time. If the number of inlier matches drops too low, the system will be
forced to rely on VO, and eventually fail at following the taught trajectory. Figure 4
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shows an illustration of the trend associated with the number of inlier matches typi-
cally observed over the course of a day. This figure sums up the experience collected
during prior field tests, as reported in [14]. On overcast days, there is a gradual de-
cline in feature matches, because the appearance of the scene is generally constant.
This is not true on sunny days, where an early drop is caused by the sun changing
position and creating sharp, moving shadows on the ground. Feature quantity begins
to rise again at the beginning of twilight, when the light from the sun is not directly
observable, generating a shadowless environment similar to an overcast day.
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Fig. 4: Illustration of the evolution of the number of inlier feature matches through a nominal
day. Time zero corresponds to when the reference images are collected (teaching phase) and the
blue line represent the typical slow degradation of the number of matches when matching current
images to the teaching phase. The difference between a sunny day (solid line) and an overcast
day (dashed line) is also included. The red line represents the number of features used during VO,
which stays constant up to the limit of the sensor. Yellow annotations refer to time events and black
annotations refer to the main causes of inlier decreases or increases.

2) Feature Uncertainty: Only considering the number of features is insufficient
to ensure precise trajectory following. 3D landmarks measured with a stereo camera
have an uncertainty in their depth associated with the disparity between the left and
right feature matches. As this disparity decreases, the uncertainty associated with the
depth reconstruction increases. High uncertainty is correlated to features observed
far from the camera (i.e., in the background of the image). A reliance on background
features leads to a pose estimation that is inaccurate in translation.

An example of the typical distribution of inlier matches observed between the
live keyframe and map keyframe during an autonomous traverse with respect to
depth uncertainty and measurement location is displayed in Figure 5. This feature
distribution is typical for a forward-looking camera on a moving robot. When mov-
ing forward, features close to the lower image border are typically not in the field
of view of both the live keyframe and the map keyframe, leading to a skewed dis-
tribution of points on the vertical axis. In addition, the platform moves through the
environment, generating changes in the re-observed images. On soft ground, a heavy
vehicle will generate ruts that modify the deployment area over time.
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Fig. 5 Matched features with
respect to the pixel coor-
dinates aggregated through
a full trajectory during the
CSA field deployment. Side
histograms represent the
distributions of matches pro-
jected on the vertical (v-axis)
and horizontal (u-axis) fields
of views. All matches are
colored by their depth ac-
curacy with dark red being
poor (> 50 cm) and dark blue
being optimal. Key elements
are labeled in black.
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3) Feature Sparsity: Lastly, features can be distributed unevenly through a given
trajectory. The previously mentioned metrics (i.e., feature quantity and feature un-
certainty) aggregate the data through a full repeat trajectory, limiting the analysis
on consecutive successful localizations. We can indirectly observe this metric using
the distance the robot relied on VO before being able to localize within its taught
images. A short distance relying on VO is sign of a robust solution against the en-
vironment traversed. A system relying entirely on VO for a long period of time will
increase its position uncertainty and will drift away from its reference trajectory
leading to a mission failure.

5 Results

This section provides an overview of the results of our field trials with respect to
the metrics defined in Section 4. We first perform a dataset comparison, where we
look at the quantity and quality of inlier visual feature matches observed during au-
tonomous traversals of each dataset. Results from the CSA dataset were obtained
with the Color-Constant VT&R algorithm, and results from the winter trials were
obtained with the Multi-Stereo VT&R algorithm. We note that color-constant im-
ages are underperforming in winter environments, and multi-stereo produces better
results. We then analyze the performance of our VT&R algorithms with respect to
the sparsity of successful localization matches to the map.

Figure 6 shows the rate of feature loss with respect to time since map creation.
For each data set, we show the rate of feature degradation from map creation to
sunset. The black horizontal line denotes our threshold match count where we can
safely localize. It can be seen that when compared to the baseline dataset, the winter
datasets have an accelerated decay rate. This can be primarily contributed to light-
ing having a much higher effect on localization, due to the low elevation of the sun
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and the poor performance of the color-constant images in these environments. Fur-
ther reasons for the accelerated decay rate include featureless snowy foregrounds,
overexposed images, melting snow, and dead matted vegetation.

Fig. 6 Feature degradation
over time. In outdoor environ-
ments, the quantity of visual
feature matches between the
live view and map begins
declining immediately after
map creation. It can be seen
that the rate of decline varies
between data sets. Note log
scale on the y-axis.

Related to feature loss, we also observe an accelerated migration of the distribu-
tion of observed feature matches towards the horizon as time passes in the winter
environments. This is displayed in Figure 7, where the distribution of inlier matches
with respect to their vertical pixel coordinates over three repeats is shown for all
three datasets. The green line shows this distribution when the map is compared to
images collected during map creation. This is the upper limit on feature quantity
as well as quality. For each data set, this distribution is nearly uniform. The blue
line shows the distribution when the map is compared to the autonomous traversal
taken as soon to map creation as possible, and the red line shows when the map is
compared to an autonomous traversal several hours after map creation.

The distribution of our baseline comparison, the CSA data set, shows a slight mi-
gration towards the horizon after 5.2 hours, yet retains a fair amount of foreground
matches. In contrast, the winter data sets both show a fast shift to horizon matches
only. Looking at the red lines of Figures 7 b and c, there is a significant positive skew
of the distribution of matches. This means that after only a few hours in this envi-
ronment, the majority of matches were obtained from the background of the image.
The ramification of this is an increase in uncertainty in our localization estimate.

This is confirmed in Figure 8, where we plot the median uncertainty in our depth
estimates for all of the inlier features observed during autonomous traversals of
each data set. As expected, the CSA data set maintains a low uncertainty, while
the uncertainty seen in matches during the winter data sets quickly rise. The CSA
data set maintains a median uncertainty less than 20 cm after five hours, while in
a fraction of the time, the Snow and Meadow data sets reach a median uncertainty
level of 40 cm and 1.4 m, respectively.

If the count of inlier feature matches at a specific time step is below our threshold
of six features, we discard the localization results and rely on VO for navigation. If
navigation relies on dead reckoning for too long, the drift in error will cause the
robot to stray from its path. We analyze the distance the robot would have driven
on VO using the various VT&R methods detailed in Section 3. For results on the
baseline CSA dataset, we refer the reader to [14]. Results with respect to sparsity
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Fig. 7: Vertical distribution of the matched inlier features in the image coordinate frame. On the
v-axis, 0 corresponds to a feature at top of the image and 360 at the bottom of the image. All dis-
tributions are normalized and represented over a time period of several hours for different datasets.

Fig. 8 Median uncertainty of
inlier matches over a period of
several hours for all data sets.
This demonstrates that the
migration of inlier matches to
the upper part of the image
leads to an increased uncer-
tainty in the estimation of the
feature’s depth, which can
lead to an inaccurate state
estimation.

are displayed in Figure 9. These figures show the Cumulative Distribution Function
(CDF) of the distance the robot would have driven on VO during the most difficult
traverse of each trial. For the Snowy Landscape, this was the repeat that occurred
2.2 hours after map creation, for the Winter Meadow the repeat at 4.0 hours was
chosen. The figure reads as: “for Y% of the traverse, the robot drove less than X m
on VO”. The black dashed vertical line denotes the mission failure point of 20 m.

For both environments, we see the trend for multi-stereo to outperform color-
constant, and color-constant to outperform the legacy system. This comes as no sur-
prise, as color-constant images were shown to underperform in these environments.
This is possibly due to a lack in color information in the snow and dead vegetation.
The multi-stereo system is based on greyscale images only, but has a wider field of
view, having the ability to acquire more stable visual features.

6 Challenges / Lessons Learned

Snow: During the teaching phase of the Snowy Landscape data set, it was bright
and sunny. Due to the high reflectivity of the snow, this caused unforeseen issues for
our stereo cameras. The brightness of the scene brought the factory settings of the
autoexposure algorithm of the Point Grey Research (PGR) Bumblebee XB3 to the
limit. The result was saturated images, which reduced details in the foreground.
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Fig. 9: Cumulative distribution of the distance the robot whould have driven on VO for various
algorithms on both winter datasets. Left: Results from the second repeat of the Snow dataset, which
occured 2.2 hours after map creation. Right: Results from the fourth repeat of the Meadow dataset,
which occured 4.0 hours after map creation. Note log scale on the x-axis.

The Snowy Landscape data set was collected when there was light snow cover.
We also attempted to perform autonomous path following in deep snow conditions
with unsatisfactory results. In light snow, small vegetation is often visible in the
foreground, providing visual features with high contrast. In deep snow, these fea-
tures are gone and what remains in the foreground is nearly featureless. The only
usable matched features were on the horizon not only for localization, but also for
VO. This caused frequent inaccurate pose estimates, which caused issues for the
path tracker. Figure 10 shows the vertical distribution of features only 0.1 hours be-
tween the teach and the repeat phase, for deep snow, light snow, and meadow. The
majority of matched features in the Deep Snow trial are concentrated on the upper
part of the images explaining the poor performance.

Fig. 10: Figures from the Deep Snow attempt. A lack of visual features in the foreground resulted
in poor localization and VO estimates. Left: Distribution of inlier feature matches with respect to
vertical pixel location. The distribution is seen after 0.1 hours for all data sets. Right: Grizzly robot
autonomously traversing in the deep snow before the failing point.

Glare: An initial hypothesis motivating those field deployments was the assump-
tion that the low elevation of the sun would case glare in the camera, making local-
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ization impossible. Due in part to the attitude of the stereo cameras, glare was never
an issue. With the cameras tilted to the ground by 20 degrees, the sun was in the
worst case only at the top of the image. We even observed cases where sun glare
increased the contrast of horizon features, providing a significant boost in feature
count. However, glare would be an issue if the cameras were pointed at the horizon.

Color-Constancy: The color-constant images are designed to remove the effects
of lighting from the scene. These images were used to great success in the CSA
field trials presented in [14]. In these trials, the robot repeated a 1 km route 26 times
with an autonomy rate of 99.9% of distance travelled in nearly every daylight con-
dition. With this prior knowledge, the color transformations were expected to boost
performance in the winter field trials presented here, but this was not the case. A hy-
pothesis is that the color-constant images were tuned to perform in green vegetation
and red-rocks-and-sand. It is possible that the dead vegetation and snowy landscapes
lack the color information to remove the effects of lighting from the images.

Feature-Migration: As explained in Section 5, we found that the distribution of
features with respect to vertical pixel location migrates to the horizon as time passes.
We found that this process is accelerated in winter environments encountered in
these trials. This migration results in an increase in the uncertainty of the robot’s
pose estimate during autonomous navigation. As the depth of observed features in-
crease, the scale estimate becomes only loosely observable, degenerating the prob-
lem to localization based on a mono-camera. Further investigation will be required
to account for this unforeseen consequence.

7 Conclusion / Future-Work

This paper presented the results of conducting a series of field trials that tested
autonomous path-following algorithms in challenging winter environments. When
compared to a summer dataset, we show a significant decrease in the quantity and
quality of visual features matched over time. Furthermore, color-constant images
that increase robustness to changes in lighting conditions have shown to be ineffec-
tive in these environments. In order for vision-based navigation to reliably navigate
in these environments, we must address some of these difficult issues.

Future avenues of research may involve further classification of appearance-
based matching performance in varying environments, variations in camera config-
urations to mitigate the issue of pose uncertainty as features migrate to the horizon,
and the use of image pre-processing [17] and intelligent exposure techniques [5] to
increase foreground matching in snowy environments.
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