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Abstract Micro aerial vehicles (MAVs) are an exciting technology for mobile sens-
ing of infrastructure as they can easily position sensors in to hard to reach positions.
Although MAVs equipped with 3D sensing are starting to be used in industry, they
currently must be remotely controlled by skilled pilot. In this paper we present an
exploration path planning approach for MAVs equipped with 3D range sensors like
lidar. The only user input that our approach requires is a 3D bounding box around
the structure. Our method incrementally plans a path for a MAV to scan all sur-
faces of the structure up to a resolution and detects when exploration is finished.
We demonstrate our method by modeling a train bridge and show that our method
builds 3D models with the efficiency of a skilled pilot.

1 Introduction

The goal of this work is to use a MAV to rapidly model large outdoor structures
with arbitrary geometry. As-built 3D models are increasingly used in a number of
industries to detect structural problems, assess damage, design renovations, and to
organize other types of data. Although the industry standard ground-based lidar are
accurate, building models with them is slow and they suffer from occlusion prob-
lems. Large structures found in outdoor, open air environments present an excellent
application for MAV-based lidar which can reach almost any vantage point. Com-
pared to stationary ground-based lidar, MAV-based lidar output a model with lower
resolution and higher uncertainty as the vehicle must use lightweight sensors and
must estimate its position. The benefit of a MAV-based lidar is coverage and rapid
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deployment. In many environments flying scanners can reach the vantage points re-
quired to achieve complete coverage, and do so very quickly. Rather than competing
with existing terrestrial lidar, we imagine such a system supporting new applications
that require low resolution and complete coverage point clouds.

A number of MAV systems are commercially available for building 3D models of
outdoor environments. Acquiring data with these systems, however, is still a manual
process requiring a skilled pilot. Not only is safely piloting a MAV near a structure
difficult, scanning complex structures under manual control is prone to error as it is
difficult for a human pilot to remember what has and what has not been scanned.
We propose a practical solution where a user draws a 3D bounding box around a
structure then a small flying vehicle autonomously scans all surfaces of the structure,
producing a 3D point cloud.

One challenge in 3D modeling infrastructure with an autonomous MAV is devel-
oping path planning algorithms. If a prior model of the infrastructure is available,
“inspection” or “coverage” planning could lead the MAV to efficiently scan all sur-
faces [7, 2]. In many applications, however, obtaining a prior model is infeasible.
Requiring a prior map will limit the adoption of a robotic planning algorithm for
infrastructure modeling. Without a priori models to use for path planning, the re-
maining problem is one of choosing an exploration path through a partially observed
environment with the goal of maximizing exploration efficiency.

The contribution of this paper is a simple yet effective 3D path planning algo-
rithm for completely scanning complex 3D environments with a range sensor at-
tached to a MAV. Specifically, we present the surface frontier, a fundamental geo-
metric aspect of 3D surface exploration, and we present an incremental path plan-
ning algorithm using surface frontiers to guide the observation of unknown surface
until the surface is completely detected. Finally, we present real world results show-
ing that our system performs as well as or better than a skilled pilot.

Fig. 1 A MAV autonomously modeling a structure (left) and the resulting point cloud (right)
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2 Related Work

Work related to ours does not rely on a prior model of the environment but itera-
tively plans exploration paths through a partially observed environment. Common
to almost all of the following approaches is discretizing the continuous world into
an occupancy grid where cells in the occupancy grid are either known occupied,
known free, or unknown to the robot. The difference between most of the following
methods is in how the information in the occupancy grid is used to guide explo-
ration.

Frontier exploration [16] is a simple 2D exploration algorithm used extensively
on ground robots. In frontier exploration, information is gained by traveling to fron-
tiers, a heuristic that has proven successful at guiding a robot to a vantage point
where unobserved cells can be observed. Extensions of frontier exploration to 3D
without reducing occupancy grid resolution are too computationally costly [5] to
run in real time on a computationally constrained MAV. Shade et al. [12] propose
a 3D frontier exploration and integrated path planning algorithm that runs in real
time, but is designed for exploration of free space not modeling outdoor surfaces.
Several groups achieve outdoor exploration and 3D mapping using MAVs by lim-
iting exploration to 2D. Heng et al. [6] implement frontier based exploration and
wall following exploration which they validate in outdoor urban environments. Jain
et al. [8] propose a frontier shoreline exploration algorithm which they validate on
a MAV exploring rivers.

Some methods estimate entropy reduction over a set of possible paths to deter-
mine the best exploration path. Stachniss et al. [15] propose generating paths that
lead to frontiers and paths that lead to previously visited locations to improve lo-
calization. The path that minimizes the sum of map entropy and pose entropy is
chosen.

“Next best view” planning algorithms have been developed over the last three
decades [9, 11] to incrementally plan sensor views for modeling objects. Next best
view algorithms generally constrain the search space of views around the object
and then find a view that maximizes some utility function. The utility function for
evaluating views might include unknown cells visible from the view and overlap
with previously acquired data for data registration.

To reduce computational cost, a number of techniques attempt to find exploration
goals without managing an occupancy grid. One method designed for indoor 3D
exploration [13] simulates particles expanding from free space according to New-
tonian dynamics. Exploration goals are set in regions of high expansion. This algo-
rithm is designed as a simplification of frontier exploration allowing the authors to
successfully explore indoor environments with a computationally constrained MAV.
Another simulated particle based method [1] simulates liquid falling on a 3D out-
door scene and detects exploration goals by finding areas where the simulated liquid
gets through the point cloud. This algorithm is limited to exploring 2.5D terrain be-
cause the algorithm is not designed for detecting holes in vertical walls and under
overhangs.



4 Luke Yoder and Sebastian Scherer

Our method is closely related to next best view techniques although it employs a
simpler utility function. Our utility function is based on the visibility of 2D frontiers
on the 2D surface of a 3D object, which are related to the frontiers used in frontier
exploration.

3 Problem Formulation

This section provides a representation for the state of a MAV and a partially ob-
served environment. In this section we also describe the problem that we go on to
solve in Section 5, as well as some assumptions.

Since we are exploring outdoors with the ability to navigate in 3D, we start
by constraining exploration to a region of interest R ⊆W where W ⊆ R3 is the
world. The MAV’s position in W is defined by its state X = [x,y,z,ϕ,θ ,ψ,c] where
(x,y,z) and (ϕ,θ ,ψ) are position and orientation in world coordinates, respectively.
The variable c is the configuration of the sensors on the vehicle which can be
multidimensional. We will refer to proposed trajectories T which symbolize time
parametrized state such that Xi = T (ti) for ti ∈

[
to, t f

]
.

We represent W as a 3D occupancy grid where cells C j can be unknown Cu, free
C f , or occupied Co. The goal of our exploration planning algorithm is to classify all
observable Co in R. Supporting this goal, we define surface information as

Is =
m

∑
j=1

{
1, if C j =Co and C j ⊆ R

0, otherwise
(1)

Where m is the number of cells in R. We define I∗s as the surface information when
all surfaces in the environment are observed. The problem that we would like to
solve is to find an optimal trajectory T ∗ from which the sensor observes all surfaces
(i.e. Is = I∗s ) in minimum time. Since an optimal coverage path in an environment
that is only partially observed may not be possible to compute, we are left with the
goal of achieving high exploration efficiency in terms of surface information gain
per unit time.

We need to make a few assumptions. First, we assume that free space in R is
one connected set reachable without leaving R. Second, we assume the vehicle’s
state estimation is accurate and robust enough to not require active localization.
Some exploration methods [15] estimate the MAV’s ability to localize over proposed
trajectories to help maintain low uncertainty in the map. We find that localization
accuracy around large structures using our laser odometry approach [17] is accurate
enough for exploration using large occupancy grid cells. For this work we assume
that active localization is not necessary.

We use the occupancy grid representation to describe our method in Section 5
but first we describe the surface frontiers that guide our exploration approach.
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4 Surface Frontiers

Our goal is to sense a structure’s surface, not the free space around the structure.
Traditional frontier exploration would lead a MAV to explore free space in addition
to surface. Because of this, frontier exploration in an outdoor environment may be
inefficient. Our method, proposed in Section 5, prioritizes surface modeling by us-
ing the boundary between known and unknown surface to guide exploration. In this
section we describe topological properties of known and unknown space that moti-
vate our method. This section starts by introducing the concept of a surface frontier,
then goes on to discuss its benefit for exploration.

4.1 Definition

We consider W as topological space where all points p ∈W are either occupied
po or free p f . All p are static and all po belong to one connected set Po = {po}.
Since W is either unobserved or partially observed a priori, points unknown to the
MAV are designated pu and known points pk. In this section we assume the MAV
is equipped with an ideal range sensor capable of classifying unoccluded volume in
its field of view as occupied or free. We define p∗k as points that can be observed
from the free space connected set that the MAV navigates through. As described in
Section 3, we assume p∗k ∩R is one connected set. Since a range sensor can only
observe the surface of occupied space,

S∗k = Po∩{p∗k}

is a surface which does not change during exploration. S∗k is the object surface ob-
servable from the free space connected set that the MAV navigates through, though
not necessarily observable by the MAV if some free space is not reachable. During
exploration a subset of S∗k are the known surfaces

Sk = Po∩{pk}

Since Sk is a subset of the surface S∗k during exploration, we know that the bound-
ary of known surface ∂Sk is also a boundary of unknown surface, where ∂ is the
boundary operator. In other words, an unobserved surface must be present just be-
yond the known surface boundary. We call ∂Sk surface frontiers. During exploration,
∂Sk is a set of one dimensional manifolds as shown in Figure 2. If we can guide a
robot to observe surface frontiers, it is almost certain that we will observe unknown
surface.
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4.2 Surface Frontier Exploration

For practical purposes we would like a simple way to define what volume in the
world should be explored. Then, given a volume to be explored, we would like to
detect when exploration is complete. This subsection introduces a region of interest
bounding the volume to be explored, then shows how we can terminate exploration
when all surfaces in the volume are observed without exhaustively exploring un-
known space.

We set a region of interest grouping points into the connected set R which is
the volume containing the structure to be modeled. As an example, R could be the
volume inside a cuboid defined by someone using the system. The goal is to observe
all surfaces inside the bounding box S∗k ∩R.

We define the region of interest boundary ∂R intersecting the connected free
space {p∗k}∩{p f } as the observable region of interest boundary

B = ∂R∩{p∗k}∩{p f }

Combining surface B with all object surfaces observable by the MAV gives us
the surface to be explored

E = B∪Sk ∩R

If {pk ∈ R} = {p∗k ∈ R} then E becomes a closed connected surface denoted
E∗. We can use this property to determine when exploration is complete. If, during
exploration, E is a set of connected surfaces instead of a closed connected surface,
exploration is not complete as there still may be unobserved surfaces in the bounding
box.

Fig. 2 Surface frontiers at the beginning of exploration
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Alternatively, if we assume that S∗k ∩R is a single connected surface then explo-
ration is complete when ∂S∗k ∩R is an empty set. This assumption relieves the MAV
of having to exhaustively search B.

Only using surface frontiers to guide exploration means we are not making any
assumptions about a structure’s geometry. Including a priori information about the
structure (e.g. max curvature) or other heuristics (e.g. number of Cu visible from
a view) could improve performance but would also increase algorithm complexity
and possibly reduce generality.

5 Method

In the following we formulate an exploration planning strategy for a MAV tasked
with the exploration problem introduced in Section 3. Unlike the frontier exploration
algorithm [16], we cannot directly navigate to surface frontiers as doing so might
lead to a collision. We also may not be able to observe frontiers if the MAV cannot
reach a state where the frontier is visible. To use surface frontiers for exploration,
we compute T (ti) from which we can observe frontiers, and terminate exploration
when surface frontiers are not observable by the MAV. In this section we start by
describing how to detect surface frontiers in the occupancy grid. We then introduce
a utility function for estimating the utility of views for sensing surface frontiers.
Finally, we describe how we can plan exploration paths using an objective function
that trades off between a view’s utility and the path cost of navigating to the view.

5.1 Occupancy Grid Surface Frontiers

Given an occupancy grid with occupied, free, and unknown cells, surface frontiers
can be detected by finding connections between all three cell classes. An occupancy
grid surface frontier can be defined as a free cell C f with a known occupied neighbor

Fig. 3 lidar field of view (left) and camera field of view (right)



8 Luke Yoder and Sebastian Scherer

Co and an unknown neighbor Cu where Co and Cu are also neighbors. An example
of surface frontiers in the occupancy grid representation is shown as the blue cells
in Figure 6.

5.2 View Utility

To guide the observation of surface frontiers we create an exploration utility function
that estimates the number of surface frontier observations that can be made at a given
view.

First we make a simplification based on our vehicle’s sensor configuration. Our
vehicle’s lidar is nearly omni-directional as shown in Figure 3. Only a small blind
spot is present behind the vehicle. We assume that the lidar scans in a spherical
pattern sampling in a circular uniform distribution, which allows us to reduce the
degrees of freedom of the sensor field of view. Assuming omni-directional sensing
allows us to simplify our MAV’s state to X = [x,y,z].

Assuming one complete scan is taken we can approximate the number of lidar
rays that will hit one unoccluded surface frontier cell. To use this as a utility function
we also consider safe flying distance from the structure ds and a maximum desired
measurements per cell tm. Given the cell height h, the distance from the sensor to
the cell r, and the number of points per scan N, the utility of a view for observing a
single surface frontier is

f (r) =


0, if r < ds

tm, if ds ≤ r < dm

AcN
As

, if dm ≤ r

(2)

Where dm =
√

h2N
4πtm

, Ac = h2 is the area of one face of the cell and As = 4πr2

is the area of a sphere. Equation 2 is plotted in Figure 4 using our vehicle’s sensor
parameters and the thresholds.

For a given view we can evaluate Equation 2 for each unocculded surface frontier
and sum the results to give us a view utility. We can repeat this over a set of views to
create a 3D utility function. To demonstrate this utility function we evaluate Equa-
tion 2 densely in Figure 5 without thresholds (i.e. tm = ∞ and ds = 0).

Unfortunately, it is expensive to evaluate the utility function densely over the
map because of the ray tracing required. From Figure 5 we observe that the surface
frontier observation utility decreases as distance from the surface increases. If our
goal is to maximize a view’s utility, the view can be offset from the surface between
the safety distance ds and dm.



Autonomous Exploration for Infrastructure Modeling with a Micro Aerial Vehicle 9

5.3 View Planning

Our view planning approach offsets the occupied cells using a distance transform
then uniformly samples potential views on the offset surface. The interested reader is
invited to read more about the SPARTAN path planner [4] which details our distance
transform and view sampling approach. For each view found using SPARTAN, we
determine which surface frontiers are visible by ray tracing. For a given view we
sum Equation 2 evaluated for each visible surface frontier cell. This gives us a set of
views weighted by their utility as shown in Figure 6. Given a robot position, partial
map, and exploration views, we plan to a views using SPARTAN.

If we want to consider the utility of a proposed path we could incrementally
sum the utility of views along a path, updating the map after summing each view
by simulating frontier observations. In particular, an approach such as [14] could be
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Fig. 4 Equation 2 evaluated with h = 0.5 meters, N = 40000, ds = 2 meters, and tm = 50

Fig. 5 Equation 2 evaluated during a simulated exploration over the center line of a simple bridge-
like object. Red cells are occupied and blue cells are surface frontiers. The yellow sphere is a goal
that the robot has almost reached.
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implemented. Unfortunately, such solutions are computationally expensive and may
quickly change due to new (real) observations. Instead of explicitly computing the
utility of paths, we focus on using path cost to trade off between nearby exploration
goals and distant exploration goals. We can then use Equation 3 to determine the
highest value exploration view. For a given map, the exploration value V of a view
X f is

V (X f ,Xo) =
U(X f )

Umax
α−

C(X f ,Xo)

Cmax
(1−α) (3)

Where α is a tuning parameter, U(X f ) is a view utility, and C(X f ,Xo) is the path
cost for navigating from the current state Xo to view X f . We can trade off between
path cost and view utility by tuning 0≤ α ≤ 1. In large environments setting α = 1
leads the MAV to inefficiently travel back and fourth across free space as it chooses
maximum utility views. Reducing α increases the value of local view utility leading
the robot to explore a region before travelling long distances to high utility views.

Once a view is chosen, the MAV replans paths at a fixed frequency until a) the
view is reached, b) the view utility is reduced to zero, c) the view is deleted when
the distance transform is updated with new observations, or d) the MAV cannot
reach the view after a reasonable amount of time. When one of these conditions is
met, a new view is chosen. If all samples are close to zero, the exploration planner
terminates. There may be surface frontiers left when the algorithm terminates, but
they will not be observable from reachable views.

To begin exploration the MAV could search the bounding box until a surface is
detected to begin exploration. In our current implementation we assume that the

Fig. 6 Weighted views during exploration simulation. Red cells are occupied and blue cells are
surface frontiers. The yellow sphere is a goal that the robot is navigating towards.
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MAV starts with the structures surface in the sensor field of view and we assume the
structures surface in the bounding box S∗k ∩R is one connected set. This speeds up
data collection by making searching the boundary unnecessary.

6 MAV Platform

The vehicle is built on top of an oct-rotor platform shown in Figure 7. All processes
are run on an onboard flight computer using a Intel i7 dual core 2.5GHz processor.
Our mapping, planning, and controls processes communicate using the Robot oper-
ating system [10]. The flight computer sends yaw, pitch, roll, and thrust commands
to a Mikrokopter flight controller. A cascaded PID controller is used to follow paths
at a fixed 0.5 m/s. The vehicle weighs 5kg and has a flight time of approximately 15
minutes.

The range sensor used for mapping is a Hokuyo UTM-30LX-EW scanning lidar
with custom gimbal which sweeps the laser in a spherical pattern. All lidar data is
stored for point cloud generation, but only measurements within 15 meters are added
to the occupancy grid. Upward and downward facing IDS imaging UI-1241LE-C-
HQ cameras using Sunex DSL215B 185◦ fisheye lenses give the vehicle a spherical
field of view. The cameras are downsampled to 480 X 480 pixels. The vehicle has
a barometric pressure sensor and Microstrain 3DM-GX3-35 IMU reporting read-
ings at 20Hz and 50Hz respectively. All sensors are time synchronized using a time
server microcontroller. Depth enhanced Visual odometry [17] is run online at 30Hz.
An unscented kalman filter [3] is used to fuse IMU, Visual odometry, barometric
pressure, and GPS.

Fig. 7 MAV platform
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7 Results

We validate our algorithm by autonomously modeling a train bridge in Pittsburgh,
Pennsylvania. The bridge, shown in Figure 9, is a 50 meter long steel and con-
crete structure. The environment is vegetated in some places and confined by bridge
structural members in others. Although there was little wind during the tests the
environment is challenging for a MAV with intermittent GPS signal as the vehicle
only has a two meter margin in some areas between its position and the obstacles.

At the start of the trial, the MAV is initialized with the bridge in sensor range.
The bounding box parameters are loosely defined around the bridge and sent to the
MAV. For this trial, the MAV flies to next best views without considering path cost
(i.e. α = 1). After manual takeoff the MAV is switched into autonomous mode and
begins exploration. Since all processes run on board, communication between the
MAV and a ground station is not used. The autonomous run lasted six minutes, and
resulted in a five million point model of the bridge which is shown in Figure 1.

We compare autonomous exploration against a manual flight by skilled pilot. The
pilot was instructed to scan all surfaces of the bridge using only a remote control to
guide the vehicle. Figure 8 shows surface information vs time for the autonomous
and manual trials. The results show that the autonomous exploration planner varies
in performance by ±8000 observed occupied cells when compared to the perfor-
mance of the single flight by a skilled pilot.

Qualitatively, the MAV’s behavior during the autonomous trials was similar to
manually guided trial. During the autonomous trials the MAV maintained safe dis-
tance from bridge surface and obstacles like tree branches and tall grass. Figure 9
shows that the MAV chose a exploration path that varied from the human operator’s
path, spending most of the mission flying along the sides of the bridge instead of
systematically weaving under the bridge like the operator.
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8 Conclusion and Future Work

In this work we demonstrate an exploration planning algorithm that requires simple
operator input to generate complex exploration paths for building a 3D model of an
arbitrary structure outdoors. We show that a prior map is not necessary for planning
paths for such a system. Finally, we demonstrate that autonomous vehicles using
our exploration algorithm can perform as well as a skilled pilot.

There are a number of limitations in our method that present challenges for fu-
ture work. The large 0.5 meter occupancy grid cell size used in this work limit the
MAV’s ability to detect small surface frontiers. If we can significantly decrease cell
size using a map representation like an octree we could ensure coverage up to a
resolution defined by the user. This would allow the user to trade off between point
cloud resolution and flight time. In larger scale environments the travel cost between
view points will become significantly higher making the consideration of path cost
more important. Our system already supports trading off between view value vs
path cost, but thorough analysis is needed to justify this approach in larger scale en-
vironments. Finally, this work assumes that the vehicle’s position estimate has low
uncertainty. This is a reasonable assumption considering the environment used in
this paper and the required map accuracy. A higher mapping accuracy would make
the system useful in more applications. To do this we would like to employ active
localization techniques as well as improved sensors in future work.
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