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Abstract This paper presents an approach to predict energy consumption in mobil-
ity systems for wheeled ground robots. The energy autonomy is a critical problem
for various battery-powered systems. Specifically, the consumption prediction in
mobility systems, which is difficult to obtain due to its complex interactivity, can
be used to improve energy efficiency. To address this problem, a self-supervised
approach is presented which considers terrain geometry and soil types. Especially,
this paper analyzes soil types which affect energy usage models, then proposes a
prediction scheme based on terrain type recognition and simple consumption mod-
eling. The developed vibration-based terrain classifier is validated with a field test
in diverse volcanic terrain.

1 Introduction

As robotics technology develops rapidly, a number of applications are deployed into
real fields. These real-world robotic applications are typically subject to the inter-
action with a challenging environment, which is characterized by its dynamic and
unknown properties. The robots deployed in these fields should have the capabil-
ity to percept, model, and interact with surrounding situations, in order to enable
safe and efficient operations under several hardware restrictions. Such autonomy
is to some extent required for any independent systems, especially for robots in
extreme environments including planetary surfaces and active volcanoes. Signifi-
cant examples for extreme terrain operations include the Mars rovers developed by
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NASA/JPL. The autonomous navigation system have shown successful results on
the remote planetary surface without intensive human intervention [2, 11].

Besides the interaction with surroundings, the energy autonomy is an essential
technique for battery-powered embedded systems. To enable long-term operations,
the robots should be capable to obtain power either from mounted generators or
external energy hotspots, and use it properly to perform all assigned tasks. Since the
energy budget is severely limited, system designers will face difficult challenges for
efficient energy utilization. A battery-powered system is known to survive longer
by appropriate scheduling of energy-consuming tasks. For example, an decreasing
load profile improves the battery behavior and makes the lifetime longer than an
inverse profile [14]. This battery characteristic leads to the following idea: if the
energy consumption can be predicted prior to the execution, and the task scheduling
is appropriately performed, the exploration period and range might be extended.

The aim of this research is a priori estimation of energy consumption in mo-
bility systems. The energy consumption is associated in some way with the robot
mechanical properties and terrain characteristics. One of the challenging problems
is to estimate the interaction between a robot and terrain since the soil behavior
cannot be modeled uniformly. In the proposed method, a self-supervised scheme
is adopted to make a simple model for energy prediction. Firstly, a vibration-based
classifier provides the estimation of terrain class which characterize the interaction
model. Then, given the class as teacher data, a vision-based classifier gives a pri-
ori estimation of the class through machine learning techniques. Finally, the energy
consumption is predicted using the terrain class and geometry data.

This paper presents the concept of the proposed scheme and detailed description
of energy-aware terrain classification based on vibration signals. The algorithm is
tested by real-world data obtained with a four-wheeled vehicle in diverse volcanic
terrain.

2 Related Works

The core part of this research belongs to the terrain classification problem. Specif-
ically, vibration-based terrain classification has been conducted by several research
groups after it is initially suggested by Iagnemma and Dubowsky [9]. Sadhukhan
et al. and DuPont et al. developed a neural network approach using FFT-based vi-
bration analysis, which distinguishes different terrain types [15, 16, 8]. Brooks et
al. proposed a classification framework using contact microphones, which estimates
terrain components such as sand and gravel [3, 4]. Weiss et al. proposed a feature-
based compact representation, which is fairly relevant to this research, classifying
different terrain types [20]. Ojeda et al. developed a neural network method appli-
cable to other sensors [12]. Similarly, road roughness estimation was performed for
high-speed vehicles by Stavens et al.[17]. These works extract descriptive vectors
from raw vibration signals, and utilize machine learning to compute terrain labels.
Many of the works are conducted in the frequency domain. Comparisons of differ-
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ent classification methods are given by Weiss et al. [19] and Coyle et al. [7], where
they mention high accuracy of the SVM (Support Vector Machine) classifier when
paired with proper kernel functions.

Recently, the self-supervised scheme is actively studied and applied to robotics
applications. The self-supervised classification is an automatic training of a clas-
sifier using estimated labels from other classifiers. The classifier to be trained is
usually using remote sensors such as cameras and LIDARs. Angelova et al. per-
formed vision-based unsupervised clustering to obtain terrain labels, then the labels
are used to train their slip estimator [1]. Krebs et al. enabled an on-line learning
of mobility attributes by combining vision and inertial/mechanical measurements
using a Bayesian framework [10]. Brooks et al. proposed a framework to predict
mechanical properties of distant terrain by empirical learning of wheel-terrain inter-
action [5]. Those works successfully predicted terrain attributes of distant terrain.

The research presented in this article also employs self-supervised learning in
order to predict energy consumption before the robot actually drives over the ter-
rain. The attribute to be estimated is apparently important for energy-aware behavior
planning. However, it is difficult to make accurate estimation since required power
is determined by a complex function of the robot and terrain interaction. This paper
analyzes the relation of energy consumption and robot-terrain interaction and devel-
ops a simple inference model using a vibration sensor and cameras. Based on the
model, the energy consumption is predicted for typical wheeled vehicles.

3 Technical Approaches

This section describes the conceptual overview of the system. Then, the detailed
technical description is given for the energy-aware terrain analysis using vibration
measurements.

3.1 Self-supervised Scheme for Inferencing Energy Consumption

The energy consumption in mobility systems depends on both terrain types and ge-
ometry. Let E be the energy consumption, A,G be the appearance and geometry
information obtained from cameras, and V be the vibration measurement from an
IMU. Assuming the consumption model is specific for finite terrain types, the re-
gression function of energy from inputs can be expressed as

f (E|A,G,V ) = ∑
T

P(T |A,G,V ) f (E|T,A,G,V ) (1)

= ∑
T

P(T |A,V ) f (E|T,G) (2)
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Fig. 1 Overview of self-
supervised scheme.

for terrain type T and ∑T P(T |A,V ) = 1. From this equation, the problem can be
split into the terrain type recognition problem (P(T |A,V )) and the energy consump-
tion inference problem ( f (E|T,G)). For recognizing terrain types, a robot classifies
terrain using appearance and vibration measurements. The self-supervised scheme
is used in this part, i.e., the terrain labels from the vibration-based classifier are used
as teacher data for the vision-based predictive classifier. On the other hand, the re-
gression function is determined empirically from experimental data. The function is
developed based on the physical model of typical wheeled robots.

The illustration of the proposed self-supervised scheme is given in Fig. 1. The re-
mainder of this paper focuses on the method to estimate energy consumption based
on vibration analysis. Firstly, the function f (E|T,G) is formulated from a physical
model. It shows the energy consumption is a linear function that depends on the
robot-terrain interaction. Next, the self-supervised classification based on vibration
analysis is explained. The classified result is processed in a winner-take-all man-
ner, and combined with the formulated energy equation to provide accurate energy
prediction.

3.2 Energy Consumption Model for Wheeled Vehicles

The amount of energy consumption depends on the soil type and the terrain geom-
etry. In this section, the model is explained based on a physical model of wheeled
vehicles.

Consider a robot driving in a velocity v over a slanted pseudo plane with angle
θp (Fig. 2). The vehicle dynamics is expressed by

∑
j

fd j −∑
j

fr j −Mgsinθp = Mv̇ (3)

where Fd j is the driving force of each wheel, fr j is the driving resistance of each
wheel, M is the total mass of the robot, and g is the gravity constant. The driving
resistance fr j is expressed as the sum of rolling resistance between the wheel and
terrain fw j(v) and friction loss in bearing and gear fg j(v).
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Fig. 2 Wheeled robot model
on slanted pseudo plane.

Fr j(v) = fw j(v)+ fg j(v) (4)

The resistance depends on the robot velocity. To simplify the problem, let us put an
affordable assumption that the robot drives at an arbitrary constant speed v0 within
a small distance. Then, the equation (3) becomes

Fd = ∑
j
[ fw j(v0)+ fg j(v0)]+Mgsinθp (5)

where Fd is the sum of all driving forces.
On the other hand, the driving force can be computed from the motor torque

fd j =
ηγTj

R
(6)

where η is the transmission efficiency, γ is the gear reduction ratio, Tj is the gener-
ated torque, and R is the wheel radius. Since the torque is proportional to current

Tj = kt I j (7)

the electrical energy consumption is expressed by

Ee =
V R

(
∑ j [ fw j(v0)+ fg j(v0)]+Mgsinθp

)
η γ kt

(8)

where V represents the source voltage. Under the assumption that the traversable
slope for wheeled robots is small, the equation can be simplified to

Ee ≃ αr,t +βrθp (9)

where αr,t and βr is constant values. Note that αr,t depends on both robots and ter-
rain, while βr depends on only robot systems. However, in the real natural environ-
ments, the slope angle observation θ is not consistent with the pseudo plane angle
θp due to the terrain deformation. In this paper, the deformation effect is modeled
by a linear equation as θp = γr,tθ . Hence, the final inference model is expressed as



6 Kyohei Otsu and Takashi Kubota

Ee ≃ αr,t +βrγr,tθ (10)
= αr,t +δr,tθ (11)

The above model suggests that we can infer the energy consumption using two
constants and a slope angle measurement. The constants are estimated empirically
from experiments. In the preliminary study, they depends on soil types, which can be
classified by vibration-based machine learning. On the other hand, the slope angle
is computed geometrically from stereo vision. There are several efficient methods
to recover terrain geometry from images [13].

3.3 Vibration-based Terrain Classification

In order to know the terrain class and the associated constants which affect energy
consumption, a vibration-based terrain classifier is proposed. The reason to choose
vibration is that it well represents the wheel-terrain interaction as presented in the
previous studies [3, 20], whereas the direct measurement of motor currents does not
work due to its high dependency on the terrain geometry (which can also be seen in
(11)).

The proposed classifier employes the feature-based SVM similar to [20]. How-
ever, the feature representation described here is computed in the frequency domain,
and designed to work for a real outdoor robot.

At first, vibration data is collected from an accelerometer rigidly attached to the
robot body. Using 3-axis acceleration data the signal power is computed and then
subtracted by the short-time averages. The processed time-series acceleration vec-
tor aaa = [a1, · · · ,at , · · · ] is converted to the time-frequency domain by continuous
wavelet transform [18].

AAA =

A f1,1 · · · A f1,t · · ·
...

. . .
...

A fm,1 · · · A fm,t · · ·

 (12)

In this representation, each column corresponds to the signal spectrum for each time,
and each row corresponds to the time-series of a single frequency.

The raw matrix can be used to train the classifiers. However, in this paper, the raw
matrix is subsampled to 2×N matrix for sake of efficiency. The rows and columns
are selected so that the characteristic elements are preserved. For the frequency do-
main, the natural frequency fn and its octave 2 fn are preserved. The signal power for
the natural frequency is dominant in vibration analysis of the robot locomotion. For
the time domain, samples on the grouser-to-grouser interval tg are selected. Typi-
cally, all-terrain robots have grousers to obtain traction. The symmetric arrangement
of grousers causes periodical characteristics to signal spectra as shown in Fig. 3. The
local peak positions are utilized to describe the time-domain characteristics. N sam-
ples around designated time t are extracted.

After the subsample process, the following 2×N matrix is obtained.
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xxxt, fn
xxxt,2 fn

]
=

[
A fn,1 · · · A fn,N
A2 fn,1 · · · A2 fn,N

]
(13)

For each row vector xxxt , the following features are extracted.

• The mean µt of the vector. The mean is roughly 0 for smooth surfaces, while it
becomes grater for rough surfaces.

µt =
1
N

N

∑
i=1

xi (14)

• The standard deviation σt . The larger deviation represents the terrain is not uni-
formly composed.

σt =

√
1
N

N

∑
i=1

(xi −µt)2 (15)

• The maximum value mt of the vector. It corresponds to the strength of the shock
from the terrain.

mt = max(xxxt) (16)

• The coefficient of variation ct . It is the relative variance to the signal strength.

ct =
σt

µt
(17)

Using these four types of features, the feature vector for each time is acquired as
follows.

XXX t =
[
µt, fn σt, fn mt, fn ct, fn µt,2 fn σt,2 fn mt,2 fn ct,2 fn

]⊤ (18)

The 8-element feature vectors are used to train classifiers. Each classifier detects one
pre-defined terrain type against all others. Although unsupervised clustering can be
used here as in [1], the supervised learning still provides accurate enough estimation
of the energy-related constants. Therefore, the supervised SVM is employed for
implementation in order to classify different soil sizes.

Fig. 3 Time-series signal
power corresponding to the
natural frequency. Detected
positive peaks caused by
grouser-to-grouser intervals
are marked with red circles. Time [s]
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4 Experiment

In the previous section, the energy inference method based on vibration measure-
ments is presented. The field experiment described in this section shows the validity
of the approach and evaluates the performance.

4.1 Setup

The rover used in the field experiment is shown in Fig. 4. It is a four-wheeled un-
manned vehicle with a customized suspension system. The dimensions are 0.88×
0.83×1.50 [m] and it weighs 50 [kg]. Four aluminum wheels with silicon grousers
are driven by DC motors at a rate 7.6 [rpm]. The wheel radius is 0.10 [m] and the
grouser-to-grouser distance is 0.05 [m]. Attached to the body, a 3-axis accelerom-

Fig. 4 The AKI rover. Four
wheeled all-terrain robots
with custom suspension
mechanism. Silicon rugs
are attached to the aluminum
wheels.

Fig. 5 Experimental fields with various soil types. Terrain types are labeled manually. (Green:
Dense Sand, Blue: Fine Gravel, Red: Coarse Gravel)
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Fig. 6 Vibration signal example for 10 [s] traversal. Three terrain types are (1) Dense Sand, (2)
Fine Gravel, and (3) Coarse Gravel. Each terrain presents distinct properties in signal strength,
periodicity, etc.

eter Crossbow CXL17LF3 measures vibration data at 100 [Hz]. The consumption
energy is computed from motor currents.

Izu-Oshima island in Japan is selected as the experimental field. The formation
of the place is based on an active volcano Mt. Mihara. The geological features have
been created by volcanic eruptions and water penetrations; therefore, diverse soil
types are mixed in local regions. Three terrain types that can be seen in Fig. 5 are
defined as follows.

1. Dense Sand: very small particles are packed and form hard terrain.
2. Fine Gravel: gravels of a few centimeters are loosely packed.
3. Coarse Gravel: larger gravels are piled and form deformable terrain.

The detailed appearance and sample vibration data are shown in Fig. 6. Each terrain
types have distinct signal properties in terms of strength, periodicity, and so on.

The algorithm is implemented in MATLAB. For the wavelet transform to extract
features, the software provided in [18] is used. The Morlet wavelet is selected as the
mother wavelet. For the terrain classification, LIBSVM [6] is used. It employes the
radial basis function kernel with optimal parameters tuned by 5-fold cross valida-
tion.
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Fig. 7 Wavelet analysis of vibration signals
for 50[s]. The signal power corresponding to
the natural frequency fn = 6.8 [Hz] and its
octave 2 fn shows significant characteristics.

Slope Angle [deg]
-10 -5 0 5 10

E
ne

rg
y 

C
on

su
m

pt
io

n 
[W

]

0

10

20

30

40

50

Dense Sand
Fine Gravel
Coarse Gravel

y=1.1423x+32.9580
R2=0.1927

Slope Angle [deg]
-10 -5 0 5 10

E
ne

rg
y 

C
on

su
m

pt
io

n 
[W

]
0

10

20

30

40

50

Dense Sand
Fine Gravel
Coarse Gravel

y=1.0752x+34.5391
R2=0.7166

Slope Angle [deg]
-10 -5 0 5 10

E
ne

rg
y 

C
on

su
m

pt
io

n 
[W

]

0

10

20

30

40

50

Dense Sand
Fine Gravel
Coarse Gravel

y=0.9105x+38.2141
R2=0.2229

Fig. 8 Relationship between slope angle and energy
consumption for 1 [m] traversal on natural terrain.
The linearity can be observed in every terrain types.
The estimated constants are shown in the figure.

4.2 Classifying Terrain based on Vibration Signals

The wavelet transform results for various terrain (i.e., AAA) are shown in Fig. 7. The
natural frequency fn = 6.8 [Hz] and its octave show significant properties. Time-
domain periodicity can be observed in correspondence with the grouser-to-grouser
interval tg = 0.63 [s]. In the algorithm, 2 × 20 matrices are extracted from these
results to generate 8-element feature vectors.

The classification result by the vibration-based classifier is shown in Table 1. The
dataset size is 191, 300, and 225, respectively. In the experiment, 10-fold cross vali-
dation is used to compute the average accuracy and variance. The 64-point FFT fea-
tures similar to [15, 19] are used as reference. The accuracy was 76.80% for 3-class
classification which is slightly inferior to the FFT features. However, the difference
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Table 1 Classification rates
per class and total classifica-
tion accuracy (%) in 10-fold
cross validation.

Proposed 64pt-FFT

Dense Sand 97.21±1.85 95.45±3.71
Fine gravel 79.59±5.42 86.81±8.42
Coarse gravel 83.80±3.38 80.90±7.67

Total 76.80±4.59 78.18±7.67

Table 2 Confusion matrix for test data.

Dense Sand Fine gravel Coarse gravel Unclassified

Sand 93.71 2.63 0.53 3.13
Fine gravel 1.67 81.00 8.33 9.00
Coarse gravel 2.23 30.61 58.74 8.42

is small considering the number of elements is eight times smaller. Moreover, higher
classification accuracy is achieved for some classes. In fact, the error rate for dense
sand terrain is less than 3%.

The confusion matrix for 3-class test data is shown in Table 2. There is confusion
in fine and coarse gravels. This is because the separability in the feature space was
relatively small. One reason will be the ambiguity of human hand-labeling. Intro-
ducing pre-training and new data might improve the classification.

4.3 Modeling Energy Usage

Two parameters αr,t and δr,t in the energy consumption model in (11) is empirically
estimated. From average consumption of all 1 [m] segments in a 773 [m] trajec-
tory, the linear regression model is estimated. Obtained data points and parameters
are presented in Fig. 8. The result shows that the terrain in the largest consumption
(coarse gravel) requires more than 15% times grater than the smallest (dense sand).
This fact supports the importance of distinguishing classes in the energy-aware con-
text.

Along with the vibration-based classifier, these regression functions produce the
energy estimation using a vibration sensor and slope measurement. Fig. 9, 10, and
11 present the results for three 100 [m] paths. Although terrain has various eleva-
tion profiles, the energy estimates were accurate. The RMS errors are 3.42, 3.06,
5.56 [W] for three paths. The reason for worse performance in Fig. 11 is that geo-
metrical steps caused wheel stuck at around 700 and 1000 [s], resulting in the rapid
increase of energy consumption. In addition to the soil type classification, the im-
portance of geometrical hazard estimation is suggested.
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Fig. 9 Experimental result for path 1. Top row: actual velocity (left) and elevation profile (right).
Bottom row: Comparison between predicted and measured energy consumption (left) and its inte-
gral (right).
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Fig. 10 Experimental result for path 2.
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Fig. 11 Experimental result for path 3. Note that the error grows at 700 and 1000 [s] due to the
geometrical step hazards.

5 Conclusion

This paper presented an approach to estimate the energy consumption of mobility
systems using vibration-based terrain classification. The compact feature represen-
tation in the time-frequency domain shows accurate classification performance in
the multi-class labeling problem. The classification results are combined with the
regression model considering a simple physical model to estimate actual energy
consumption. The real field data validate the promising performance of the pro-
posed vibration-based approach.

Several improvements can be suggested to the current inference model. As the
experiments showed, the energy consumption drastically changes in the presence
of (non-)geometrical hazards such as steps or slip-inducing terrain. The regression
model should consider those hazards in order to improve robustness. Moreover, the
confusion in similar terrain types may be improved by introducing pre-training, or
handling visual information at the same time.
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