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Abstract - Robot deployment in open snow-covered environments poses challenges
to existing vision-based localization and mapping methods. Limited field of view
and over-exposure in regions where snow is present leads to difficulty identifying
and tracking features in the environment. The wide variation in scene depth and
relative visual saliency of points on the horizon results in clustered features with
poor depth estimates, as well as the failure of typical keyframe selection metrics
to produce reliable bundle adjustment results. In this work, we propose the use of
and two extensions to Multi-Camera Parallel Tracking and Mapping (MCPTAM) to
improve localization performance in snow-laden environments. First, we define a
snow segmentation method and snow-specific image filtering to enhance detectabil-
ity of local features on the snow surface. Then, we define a feature entropy reduction
metric for keyframe selection that leads to reduced map sizes while maintaining lo-
calization accuracy. Both refinements are demonstrated on a snow-laden outdoor
dataset collected with a wide field-of-view, three camera cluster on a ground rover
platform.

1 Introduction
A wide range of challenging and remote tasks have been proposed as possible field
robotics applications, from wilderness search and rescue, to pipeline and infras-
tructure inspection, to environmental monitoring. Particularly in Northern climates,
these activities require autonomous navigation in snow-laden environments, which
present distinct perception challenges for autonomous vehicles. The possibility of
tree cover precludes reliance on GPS alone for positioning, and both obstacle de-
tection and accuracy requirements further drive the need for alternate localization
methods.

Both visual and laser based simultaneous localization and mapping methods can
provide such improved localization. Although laser scanners are not significantly af-
fected by snow, their relatively large costs can be prohibitive for many applications.
In this work, we consider the problem of deploying a feature based visual SLAM
system known as Multi-Camera Parallel Tracking and Mapping (MCPTAM) in a
snowy, outdoor environment. MCPTAM employs an arbitrary cluster of cameras
with wide field of view, with or without overlap, to track point features in the envi-
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ronment, and has been demonstrated to provide accuracy better than 1% of distance
traveled in both indoor and outdoor environments [17, 8, 7].

The primary challenge with outdoor and snowy environments is that large areas
of the image are relatively feature poor due to limited geometric structure, overcast
skies and large regions of uniform snow cover. Without employing expensive high
dynamic range cameras, this leads to difficulties tracking features near the robot
and clusters the points used for map generation along the horizon. The result is poor
translational tracking and a susceptibility to map optimization failures if features are
incorrectly corresponded.

To address these limitations, we introduce two extensions to our previous work.
First we investigate changes to MCPTAM’s front-end, by pre-processing the camera
frames to extract more robust features. We use as motivation some of the works of [9,
19] which use region based contrast equalization and horizon detection [20] to fulfill
this goal. Second, we propose core changes to MCPTAM’s backend which allow
for more informed keyframe selection based on the expected entropy reduction of
uncertainty in the map points. These modifications directly impact the quality of the
localization solution by creating a more robust set of features to track and optimize
against for mapping.

2 Related Works
To date, there have been comparatively few instances of autonomous robotic de-
ployments in snowy conditions. The CoolRobot is a mobile sensor station deployed
both in Greenland and on the Antarctic plateau, and relies on solar power and GPS
waypoint navigation to move through primarily flat terrain [13]. Similarly, both the
Nomad [1] and MARVIN [6] rely on GPS guided navigation with a laser scanner and
vision for local collision avoidance in polar environments. The SnoMote platform
seeks to augment GPS with visual localization and terrain drivability estimation for
detailed ice sheet mapping [19].

Closely related to visual navigation in snow-covered terrain is use of computer
vision for planetary exploration. The visual localization challenges are similar in
both environments, with limited local features, large variations in scene depth, and
unreliable features in the sky portion of images. For example, stereo localization
has been used on lengthy datasets collected in Devon Island, Canada [5], where
repetitive ground terrain and a lack of rotation invariant features led the authors to
note the concentration of features on the horizon. Similarly, stereo and/or laser scan
data was employed in a large range of planetary analog terrains for localization and
drivability analysis [18]. In both cases, the image quality both near the robot and at
a distance was not often an issue for feature extraction.

The MCPTAM method builds on the foundation of Parallel Tracking and Map-
ping [10], which splits the localization and mapping problem into separate pose
tracking and keyframe based feature mapping processes. This divide prevents pose
estimation from being delayed by the batch optimization required as a part of the
mapping bundle adjustment. Features are tracked between images and localization
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is performed relative to the known map, while map updates are performed when
new keyframes are selected to be inserted into the global map.

Many visual mapping techniques use keyframes in order to reduce the com-
putational burden of the mapping process. Existing approaches generally insert
keyframes based on point triangulation baseline [10], or other heuristics such as
the co-visibility of features [16], or the overlap in the number of tracked points [12].
These heuristics attempt to insert keyframes in order to maintain the map integrity,
yet do not directly attempt to minimize the uncertainty in the map. The work most
related to ours generates image features off-line, creates a buffer of the image
frames, and selects keyframes based on saliency in order to reduce content redun-
dancy [3]. In contrast, our approach is a real-time, online system, and attempts to
reduce feature uncertainty while the camera is in motion.

In addition to keyframe selection, the identification of strong and stable visual
features is both important and challenging in snowy environments. The Snomote [19]
integrates a pre-processing technique of contrast limited adaptive histogram equal-
ization (CLAHE) to enhance the contrast of the captured images. A slope finding
method is applied to mask out the mountain peaks or other structures from the back-
ground and SIFT features are detected mainly from the foreground.

Applying feature detection methods to the entire image is problematic, however,
as environments with trees and foliage result in self similar image features which are
difficult to match. Instead, horizon detection can be used to apply specific feature de-
tection criteria in the snow-laden region of the image. Existing methods (e.g. [4]) do
not explicitly consider the snow-laden case, with the exception of the SnoMote [20],
which uses a weighted sum of weak and strong visual cues to identify fairly precise
horizon lines. The method is overly computationally expensive for our application,
and so we present a simplified method based on the Hough transform in this work.

3 Multiple Camera Parallel Tracking and Mapping
MCPTAM is a real-time, feature-based, visual slam algorithm which extends Klein
and Murray’s Parallel Tracking and Mapping (PTAM) [10] in five ways. First it al-
lows multiple, non-overlapping field-of-view (FOV), heterogeneous cameras in any
fixed configuration to be successfully combined. MCPTAM’s novel initialization
mechanism allows for scale to be recovered, even with non-overlapping cameras.
Second it extends the PTAM’s pinhole camera model to work with fish-eye and
omnidirectional lenses through the use of the Taylor camera model [15]. The ultra-
wide FOV coupled with the multi-camera cluster prevents feature starvation due to
occlusions and textureless frames in any single camera. Third, PTAM’s backend has
been replaced with the g2o optimizer allowing for faster and more flexible optimiza-
tion structures [11]. Finally, MCPTAM introduces both an improved update process
based on box-plus manifolds and a novel feature parameterization using spherical
co-ordinates anchored in a base-frame [17].

A brief overview of the MCPTAM formulation proceeds as follows. Denote a
point in the global frame, p ∈R3 as p = [px py pz]

T where px , py , pz represent the
x, y, and z components of the point, respectively. Let the map, P, be a set of points,
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defined as P = {p1, p2, . . . , pn}. Denote the re-projection function as Π : R3 7→ R2,
which maps a point in the global 3D frame to a pixel location on the image plane.

In the standard pinhole camera model, light rays are represented as lines which
converge at the center of projection and intersect with the image plane. In order to
accommodate the large radial distortion caused by fisheye lenses, the Taylor model
uses a spherical mapping where the elevation and azimuth angles to a 3D point,
s = [θ ,φ ]T , are modeled as half lines which pass through the sphere’s center, which
are then mapped to the image plane through a polynomial mapping function.

In order to track the camera cluster pose, ωc ∈ SE(3) , the map points, P, are
reprojected into the image frames of the cameras. Given a set of feature correspon-
dences, the camera cluster pose parameters are found through a weighted nonlinear
least squares optimization which seeks to determine the pose parameters such that
the re-projection error between corresponding points is minimized. By re-observing
features, the point locations in the map can be refined using additional measure-
ments, and new map points can be inserted into the map. To perform these tasks,
MCPTAM uses keyframes, which are a snapshot of the images and point measure-
ments taken from a point along the camera cluster’s trajectory. Since MCPTAM
performs tracking using multiple cameras, it extends the idea of key-frames to multi-
keyframes, which are simply a collection of the key-frames from the individual cam-
eras at a particular instant in time.

We shall define a multi-keyframe, M, as collection of keyframes, M = {K1, . . . ,Km},
corresponding to the m individual cameras which are part of the multi-camera clus-
ter. Each multi-keyframe is associated with its pose in SE(3). In order to insert
a new multi-keyframe into the map, the point measurements from each observing
keyframe are collected, and the parameters of the point locations, as well as the
keyframe poses are optimized using a bundle adjustment procedure.

Entropy Computation for a Gaussian PDF: The Shannon entropy is a mea-
sure of the unpredictability or uncertainty of information content. Suppose X =
{x1,x2, . . . ,xn} is a discrete random variable. The Shannon entropy for X , H(X)
is given as H(X) = −∑xi∈X P(xi) logP(xi), where P(xi) denotes the probability of
event xi occurring. The Shannon entropy provides a scalar value that quantifies the
average variance of the discrete random variable X . The base of the logarithm de-
notes the units of the entropy. In the case where the base of the logarithm is 2, the
units are referred to as bits, and when performed using the natural logarithm, the
units are referred to as nats. It is also possible to compute the Shannon entropy for
a continuous random variable. In the case where the continuous random variable is
modeled as a Gaussian distribution, the entropy can be computed as

he(Y ) =
1
2

ln((2πe)n |Σ |), (1)

where Σ is the covariance matrix of the multivariate Gaussian distribution, |· | de-
notes the determinant operator, and he(Y ) is used to denote that the logarithm was
taken with base e. Note that unlike the entropy for discrete random variables, it is
possible for the entropy of continuous random variables to be less than zero.
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4 Proposed Approach
Our approach involves both pre-processing of images to improve feature track-
ing despite the limitations of images acquired in snow-covered environments, and
improvements to the keyframe selection process that help maintain map quality
throughout the test datasets.

4.1 Pre-Processing Pipeline
The pre-processing pipeline that is used to enhance the captured image for detecting
good features for localization of our mobile robot consists of snow segmentation,
histogram equalization, and feature selection phases.

Snow Segmentation: We first apply a Canny edge detector [2] to remove the un-
desired information from the image while still retaining the structural information.
This is applied prior to a Hough Line transform, which is used to detect the line that
segments out the snow from the rest of the regions in image.

Consider a line represented in the polar form ρ = xcosθ + ysinθ where ρ is
the radial distance from the origin and θ is the angle formed by this radial line and
the horizontal axis measured in the counter-clockwise direction. The Hough Line
transform uses a 2D accumulator array to detect the existence of lines in the edge
based image from the Canny edge detector using a voting based method to output ρ

and θ . Each element, (ρ,θ ), in the output represents a line. For our task , we select
the element with the highest value as the horizon, which indicates the straight line
that is the most strongly represented in the input image. It is important to note that
for our concerned task, we only detect horizontal lines in the image.

Histogram Equalization: Before feeding the input image to MCPTAM we use
histogram equalization to enhance the global contrast of the image. Since snow
laden environments lead to low contrast images, enhancing the contrast can signif-
icantly improve the detection of stable features. The global histogram equalization
(GHE) transform, T (r), can be represented as

T (r) = (L−1)
L−1

∑
j=0

pr(r j), (2)

where L represents the number of gray level intensities present in the image, j is
the intensity level varying from 0 to L−1, and pr(r j) is the probability distribution
function (pdf) of intensity level j.

The pdf is defined by:

pr(r j) =
N j

Nt
, (3)

where N j is the number of pixels with intensity level j and Nt is the total num-
ber of pixels present in the image. We also implemented contrast limited adaptive
histogram equalization (CLAHE) [21] for comparison. Instead of accounting for
global illumination changes and coming up with single histogram, CLAHE com-
putes several histograms each belonging to a different part of the image and uses
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this information for changing the local contrast of the image. CLAHE also contains
a contrast limiting function that limits the amplification of noise.

Feature Selection: We take this enhanced image obtained after histogram equal-
ization and input it into MCPTAM system where we detect coarse, mid level and
fine FAST features in the images for each camera. FAST features are used because
of their computational efficiency and ability to detect stable corner features [14].
Using the (ρ,θ) obtained from the Hough Line transform, we select fine features
from the segmented snow region below the horizon, and coarse features from the
rest of the image. The large structural features in the snow laden environments are
generally trees or far away buildings, and generating fine features from these image
regions are not helpful as the features generated are not sufficiently distinguishable
to produce correct correspondences. The nearby features in snow on the ground can
be better localized, however, and therefore become very important to the mapping
process. Hence we detect and track fine features in snow and coarse features from
far away structures for localization and mapping.

4.2 Entropy Based Keyframe Selection
The quality of the map point parameter estimation is heavily dependent on the trian-
gulation baseline between the measurement viewpoints. Many visual SLAM tech-
niques use heuristics based on the point triangulation baseline to perform keyframe
insertion, however no existing approaches attempt to perform keyframe selection
through direct minimization of the point estimate covariance.

We propose a covariance update on the point with the assumption that the
keyframe candidate’s location is known and fixed. Although the keyframe’s pose
parameters are in fact updated through bundle adjustment once inserted into the
map, the fixed keyframe parameter assumption allows for rapid evaluation of the
point covariance update, and is reasonable so long as the tracker pose estimate is
sufficiently accurate.

In order to determine when a multi-keyframe should be inserted into the map, we
inspect the uncertainty of the current camera cluster provided by the tracking pro-
cess. The covariance of the tracking pose parameters is given by Σ c = (GTWG)−1,
where G = ∂Π

∂ωc is the Jacobian of the map re-projection error with respect to the
cluster state, and W is the matrix of weights associated with the measurements. To
assess the current tracking performance, we extract the x, y, and z diagonal com-
ponents of covariance matrix Σ c, denoted as σx, σy, σz, respectively. The rotational
covariances are ignored at this stage, as generally the rotations of the camera cluster
can be tracked accurately using points of varying depth, whereas accurate positional
tracking requires relatively close points in order to resolve the scale of the motion.
Finally, a multi-keyframe is added when any element of the positional entropy is
above a user defined threshold, ε , or

max(he(σx),he(σy),he(σz))> ε, (4)

where he(·) is computed using Equation (1). When a multi-keyframe addition is
triggered, the next step is to determine which multi-keyframe should be added. For
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this, multi-keyframe candidates are maintained in a buffer and scored based on the
expected reduction in point depth entropy if added to the map through a bundle
adjustment process.

As the tracking thread operates, each successfully tracked frame, along with its
corresponding set of point feature measurements and global pose estimate, are added
as multi-keyframe candidates in a buffer. Suppose the tracking thread is currently
operating at time t, and the last multi-keyframe insertion occurred at time k. Denote
the set of multi-keyframe candidates which are buffered between times t and k as

Φ = {Mt ,Mt−1,Mt−2 . . . ,Mt−k}. (5)

Since each of the multi-keyframe candidates are saved from the tracking thread,
an estimate of the global pose of each candidate is available from the tracking solu-
tion. Therefore, it is possible to determine the subset of map points observed in the
individual keyframes within each multi-keyframe candidate. Denote the set of map
points from P, visible in Kl ∈Mi, as P̃Kil ⊂ P.

Since each map point position is estimated through a standard bundle adjustment
approach, the map point parameters are modeled as a Gaussian distribution with an
associated mean and covariance. We denote the estimate for point p j as p̂ j, and the
associated covariance matrix Σ j ∈ R3×3.

Suppose point p j ∈ P̃Kil is observed in keyframe Kl ∈ Mi. Our method seeks to
determine the updated covariance of point p j, if triangulated using an additional
measurement from keyframe Kl . This is accomplished using a covariance update
step as per the Extended Kalman Filter.

Denote the Jacobian of the re-projection function with respect to the point pa-
rameters, p, evaluated at point p̂ j, as

J j =
∂Π

∂ p
|p̂ j . (6)

The Jacobian, J j, describes how perturbations in the point parameters for p̂ j map
to perturbations in the image re-projections. Using the Jacobian, J j, and the prior
point covariance Σ j, the predicted point covariance is given as

Σ̄ j = (I−Σ jJT
j (J jΣ jJT

j +R)−1J j)Σ j. (7)

The predicted covariance Σ̄ j provides an estimate of the covariance for point p j,
if the observing keyframe was inserted into the bundle adjustment process. Note that
Equation (7) can be evaluated rapidly for each point, as the computational bottleneck
is the inversion of a 3 by 3 matrix.

Although comparison of the predicted covariance to the prior covariance pro-
vides information on reduction of point parameter uncertainty for one point, the
covariance representation does not allow for a convenient way to asses the uncer-
tainty reduction across all of the points observed in the multi-keyframe. To that end,
we propose evaluation of the uncertainty reduction using the point entropy.
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Denote the entropy corresponding to the point’s prior and predicted covariance
as he(p̂ j) and h̄e(p̂ j), respectively. The reduction in entropy for point p j is given as
Λ(p j) = he(p̂ j)− h̄e(p̂ j). Using the expected entropy reduction for a single point,
the expected entropy reduction for all of the points observed in multi-keyframe Mi is
given as Ψ(Mi) = ∑Kl∈Mi ∑p∈P̃Kil

Λ(p). Finally, when a multi-keyframe needs to be
inserted into the map, all of the multi-keyframes within the buffer, Φ , are evaluated
for total point entropy reduction. The multi-keyframe selected for insertion, M∗i , is
the one from the buffer which maximizes the point entropy reduction:

M∗i = argmax
Mi∈Φ

Ψ(Mi). (8)

Once the optimal keyframe from the buffer is selected, it is inserted into the map
through bundle adjustment, and the multi-keyframe buffer, Φ , is cleared.

Although it is possible perform keyframe selection using heuristics which rely on
the geometric relationships between point observation baselines, such approaches
do not account for possible degradation of point re-projection sensitivity that is also
dependent on the camera model. For example, an image taken from a wide field of
view fisheye lens camera will generally have significant distortion and spatial com-
pression near the image edges. To illustrate this point, consider a uniform, 2D, planar
grid of points, positioned at unit depth from a camera. Figures 1(a) and 1(b) show
the projection of the grid onto the image plane using the pinhole and Taylor models,
respectively. The pinhole projection preserves the uniform spatial distribution of the
3D grid on the image plane, while the Taylor model spatially compresses the points
near the boundaries of the image plane. Such compression suggests that with a large
FOV lens described using the Taylor camera model, the point projections which fall
near the boundaries of the image are less sensitive to perturbations of the 3D point
location. This insight is illustrated in Figures 1(c) and 1(d), which show the norm
of the projection Jacobian with respect to perturbations in the x direction of the 3D
point grid. It is evident that the pinhole camera model maintains uniform sensitivity
to point perturbations across the image plane, while the Taylor camera model has
reduced sensitivity as the points are projected farther from the image center.

Our proposed keyframe selection method is able to account for the properties of
the lens model being used, as the point projection Jacobian, given by Equation (6),
is dependent on the underlying camera model. For example, using the Taylor model,
Equation (6) can be expanded as

∂Π

∂ p
=

∂Π

∂ s
∂ s
∂ r

∂ r
∂ p

(9)

where r ∈ R3 is the position of point p with respect to the observing frame, ∂Π

∂ s
relates the image re-projection to the point’s projection on the unit sphere, ∂ s

∂ r relates
the perturbations of a point projection on the unit sphere to perturbations of the point
position in the observing keyframe, and ∂ r

∂ p relates the changes of the point in the
observing keyframe to changes of the point parameters.
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(a) Pinhole (b) Taylor (c) Jacobian (pin-
hole)

(d) Jacobian (Taylor)

Fig. 1 Comparison of image re-projection sensitivity between pinhole and Taylor camera models.
(a) and (b) illustrate the projection of 3D points onto the image plane, using the pinhole and Taylor
camera models, respectively. The image compression around the edges results in reduced sensitiv-
ity of image projection Jacobian in the outer edge areas, as seen in (d), where as the pinhole camera
model displays uniform strength in the image re-projection Jacobian, as seen in (c).

5 Experimental Results
To verify our proposed methods, experiments were conducted using field data col-
lected in a snow laden environment. A Clearpath Robotics Husky platform was
equipped with three Ximia xiQ cameras, arranged in a rigid cluster, with one cam-
era looking forwards, and the others facing off to the left and right sides of the
vehicle. The cameras were fitted with wide angle lenses, with approximately 160
degrees field of view. Images were captured at 30 frames per second, at a resolution
of 900x600 pixels. The vehicle traveled at a constant velocity of 0.5 m/s for over
120 m, and traversed a snow and ice covered path, as well as a snowy field area.

5.1 Image Pre-processing
We compare GHE and CLAHE in terms of the features that result after pre-
processing. The FAST features detected on snow in the enhanced images are shown
in Figure 2. It is evident that the largest number of features detected in snow were
found with GHE. To quantitatively compare the two histogram equalization tech-
niques, we calculated the number of features detected below the horizon. The total
number of features obtained for a video sequence of 1497 frames from our dataset
were 407,665 for GHE, 83,650 for CLAHE and 4,919 without any histogram equal-
ization, demonstrating the advantage of GHE in terms of FAST feature detection in
snow.

Fig. 2 Comparison of FAST features detection on (a) a normal image, (b) image ehanced by global
histogram equalization, (c) image ehanced by CLAHE.
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For segmenting the snow from the rest of the image, representative results are
shown in Figure 3, which includes the output of our snow segmentation algorithm
(the red line) for the single frontal view (camera 1) and features detected on snow
in Canny edge images for the three camera cluster. Our approach produces a rough
segmentation of each image in 0.015s, on average, over the entire dataset, which
has an image resolution of 900x600. To compare our approach with the the state of
the art result [20], we decrease the resolution of our captured dataset to 640x480. A
naive implementation of our approach took on average 0.0098 seconds per frame,
whereas the method proposed in [20] requires 0.0296 seconds per frame.

  

Fig. 3 The result of snow segmentation from camera 1 (lower left) and FAST features detected on
snow in Canny edge images for the three cameras.

5.2 MCPTAM using Histogram Equalization

We next compare MCPTAM mapping performance with different equalization
methods. As evident in Figure 4, GHE provides the most consistent feature map,
compared to the CLAHE methods. As the patch size for the CLAHE methods
increase, the resulting map exhibits signs of scale drift, as well as poor feature
matches. It is also worth noting that GHE results in the recovery of a greater num-
ber of fine features, compared to the adaptive method. This is likely because GHE
maintains more consistent illumination between the inserted keyframes, resulting in
better feature matches over local methods.

Table 1 presents a summary of the results. It is evident that GHE resulted in a fea-
ture map with the fewest number of inserted multi-keyframes and the fewest num-
ber of points. This suggests the robot was able to travel longer distances on average
before inserting a multi-keyframe into the map and localize more accurately with
the features that were included, which is further verified by the reported maximum
tracking entropy over the trail. The GHE method resulted in the lowest tracking en-
tropy (as calculated by Equation (4)), suggesting the generated map provided stable
points to track against throughout the test run.
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(a) GHE (b) CLAHE (8 px)

(c) CLAHE (16 px) (d) CLAHE (32 px)

Fig. 4 Comparison of feature maps with different histogram equalization techniques. Red points
denote fine features, while blue and green points denote coarse features. (a) shows the resulting
map when the images are processed using GHE. Figures (b) to (d) present maps generated us-
ing CLAHE with different patch sizes. Note that large patch sizes cause instability in the feature
tracking due to mismatched points.

Table 1 Summary of Results for Histogram Equalization Experiments

GHE CLAHE (8) CLAHE (16) CLAHE (32)

Max. Tracking Entropy (nats) -2.4851 -2.2738 -1.5941 -1.6170
No. Map Points 2777 2960 6115 -
No. MKFs 168 175 240 -

5.3 Multi-keyframe Selection
Although previous authors have successfully used keyframe insertion methods re-
lated to feature overlap and the number of features tracked, such approaches were
completely unsuccessful for our application due to intermittent feature tracking ex-
perienced in snowy environments. Instead, we compare our entropy based (EB) ap-
proach to a movement threshold on the vehicle, where a multi-keyframe is inserted
once the camera cluster moves a user defined threshold distance from the previously
inserted multi-keyframe. Only a threshold on the position is used; the rotation need
not be considered due to the nearly 360 degree view of the multi-camera cluster,
which tends to maintain consistent orientation based on stable, persistent horizon
features.

Figure 6 presents a comparison of the multi-keyframe selection methods tested.
The EB approach provides consistent mapping results, while the 2m threshold ap-
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proach fails midway through the path. This is likely because the non-entropy based
approaches do not consider any improvements in the map points, and merely as-
sume that the multi-keyframe insertion will improve the map and provide stable
points to track against. Our approach, on the other hand, actively seeks to insert
multi-keyframes such that the map integrity is maintained, providing the camera
cluster with stable and well estimated point features for localization. Although the
map generated by the 1m threshold (1mt) policy (Figure 6(a) ) is qualitatively sim-
ilar to the one generated by the EB approach, the 1mt map contains approximately
42% more points compared to our proposed method, as summarized in Table 2.
From Table 2, it is also clear that the EB method results in the lowest tracking en-
tropy, along with the fewest inserted multi-keyframes. This is because our approach
only adds new multi-keyframes when required by the tracker, and seeks to improve
the points which exist in the map. As a result, fewer multi-keyframes are added, and
fewer points are required to maintain suitable tracking integrity.
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Fig. 5 Comparison of the recovered vehicle motion using different multi-keyframe selection meth-
ods. Note that the EB approach demonstrates the lowest scale drift in the trajectory.

Figure 5 presents the recovered vehicle trajectories. As seen in Figure 6(d), the
vehicle traverses along a path area, then moves onto a field, and finally joins up with
the path again. All of the evaluated methods result in similar trajectories over the
path area, but exhibit differences once the vehicle moves onto the field. We see that
the EB multi-keyframe selection approach results in the smallest scale drift while
traversing the field, as demonstrated by the path closely rejoining itself. Conversely,
the 1mt and 2mt approaches both exhibit a larger scale drift in the trajectory solution,
since the static threshold policies do not account for map integrity when inserting
multi-keyframes.

6 Conclusion

In this work, two extensions to the MCPTAM visual localization method are shown
to significantly improve the performance of the system in snow laden environments.



Taming the North: MCPTAM in Snow-Laden Environments 13

(a) 1mt (b) 2mt

(c) EB (d) Map Overlay

Fig. 6 Comparison of multi-keyframe selection methods. Figures (a) and (b) show the resulting
map using a 1m and 2m movement threshold, respectively. Figures (c) and (d) present the generated
map using our proposed entropy based keyframe selection method.

Table 2 Summary of Results for multi-keyframe selection experiments

EB-MKF 1m Threshold 2m Threshold

Max. Tracking Entropy (nats) -2.76771 -2.0314 -2.4113
No. Map Points 2316 4001 2897
No. MKFs 150 175 162

We demonstrate that a pre-processing pipeline that uses GHE to improve FAST fea-
ture detection in snow, as well as horizon detection and a tailored feature selection
process, results in improved feature tracking. We also show that point entropy re-
duction can be used as a keyframe selection metric, which leads to fewer keyframes
and reduced map drift when compared to existing methods. In the future, we in-
tend to expand the set of environments employed for testing, incorporate ground
truth measurement of vehicle motion, and investigate the persistence and accurate
localization of features in the map.
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