
Vision and Learning for Deliberative Monocular
Cluttered Flight

Debadeepta Dey1, Kumar Shaurya Shankar2, Sam Zeng3,Rupesh Mehta4,

M. Talha Agcayazi5, Christopher Eriksen6, Shreyansh Daftry7,
Martial Hebert8, J. Andrew Bagnell9

Abstract Cameras provide a rich source of information while being passive, cheap
and lightweight for small Unmanned Aerial Vehicles (UAVs). In this work we
present the first implementation of receding horizon control, which is widely used
in ground vehicles, with monocular vision as the only sensing mode for autonomous
UAV flight in dense clutter. Two key contributions make this possible: novel cou-
pling of perception and control via relevant and diverse, multiple interpretations
of the scene around the robot, leveraging recent advances in machine learning to
showcase anytime budgeted cost-sensitive feature selection, and fast non-linear re-
gression for monocular depth prediction. We empirically demonstrate the efficacy
of our novel pipeline via real world experiments of more than 2 kms through dense
trees with an off-the-shelf quadrotor. Moreover our pipeline is designed to combine
information from other modalities like stereo and lidar.

1 Introduction
Unmanned Aerial Vehicles (UAVs) have recently received a lot of attention by

the robotics community. While autonomous flight with active sensors like lidars has
been well studied [29, 3], flight using passive sensors like cameras has relatively
lagged behind. This is especially important given that small UAVs do not have the
payload and power capabilities for carrying such sensors. Additonally, most of the
modern research on UAVs has focussed on flying at altitudes with mostly open space
[10]. Flying UAVs close to the ground through dense clutter [27, 29] has been less
explored.

Receding horizon control [19] is a classical deliberative scheme commonly used
in autonomous ground vehicles including five out of the six finalists of the DARPA
Urban Challenge [6]. Figure 2 illustrates receding horizon control on our UAV in
motion capture. In receding horizon control, a pre-selected set of dynamically fea-
sible trajectories of fixed length (the horizon), are evaluated on a cost map of the
environment around the vehicle and the trajectory that avoids collision while mak-

1, 2, 3, 7, 8 and 9 are with The Robotics Institute, Carnegie Mellon University, Pittsburgh,
PA, USA e-mail: debadeep,kumarsha,samlzeng,daftry,hebert,dbagnell@ri.
cmu.edu · 4 NVIDIA Corporation, Santa Clara, CA, USA e-mail: rupeshm@nvidia.com ·
5 George Mason University, Fairfax, VA, USA, e-mail: magcayaz@gmu.edu · 6 Harvey Mudd
College, Claremont, CA, USA, e-mail: ceriksen@hmc.edu

1



2 Dey et al.

ing most progress towards a goal location is chosen. This trajectory is traversed for
a bit and the process repeated again.

We demonstrate the first receding horizon control with monocular vision imple-
mentation on a UAV. Figure 1 shows our quadrotor evaluating a set of trajectories on
the projected depth image obtained from monocular depth prediction and traversing
the chosen one.
Fig. 1 Example of receding
horizon with a quadrotor us-
ing monocular vision. The
lower left images show the
view from the front camera
and the corresponding depth
images from the monocular
depth perception layer. The
rest of the figure shows the
overhead view of the quadro-
tor and the traversability map
(built by projecting out the
depth image) where red indi-
cates higher obstacle density.
The grid is 1x1 m2. The tra-
jectories are evaluated on the
projected depth image and the
one with the least collision
score (thick green) trajectory
followed.

Fig. 2 Receding horizon
control on UAV in motion
capture. A library of 78 tra-
jecories of length 5 m are
evaluated to find the best
collision-free trajectory. This
is followed for 1 m at 1 m/s
and the process repeated.

This is motivated by our previous work [27], where we used imitation learning
to learn a purely reactive controller for flying a UAV using only monocular vision
through dense clutter. While good obstacle avoidance behavior was obtained, there
are certain limitations of a purely reactive layer that a more deliberative approach
like receding horizon control can ameliorate. Reactive control is by definition my-
opic, i.e., it concerns itself with avoiding the obstacles closest to the vehicle. This
can lead to it being easily stuck in cul-de-sacs. Since receding horizon control plans
for longer horizons it achieves better plans and minimizes the chances of getting
stuck [21]. Another limitation of pure reactive control is the difficulty to reach a
goal location or direction. In a receding horizon control scheme, trajectories are se-
lected based on a score which is the sum of two terms: first, the collision score of
traversing it and second, the heuristic cost of reaching the goal from the end of the



Vision and Learning for Deliberative Monocular Cluttered Flight 3

trajectory. By weighting both these terms suitably, goal-directed behavior is realized
while maintaining obstacle-avoidance capability. Though it is to be noted that reac-
tive control can be integrated with receding horizon for obtaining the best of both
worlds in terms of collision avoidance behavior.

Receding horizon control needs three working components

1. A method to estimate depth: This can be obtained from stereo vision [30, 24] or
dense structure-from-motion (SfM) [33]. But these are not amenable for achiev-
ing higher speeds due to high computational expense. We note that in the pres-
ence of enough computation power, information from these techniques can be
combined with monocular vision to improve overall perception.
Biologists have found strong evidence that birds and insects use optical flow to
navigate through dense clutter [31]. Optical flow has been used for autonomous
flight of UAVs [5]. However, it is difficult to directly derive a robust control prin-
ciple from flow. Instead we follow the same data driven principle as our previous
work [27] and use local statistics of optical flow as features in the monocular
depth prediction module. This allows the learning algorithm to derive complex
behaviors in a data driven fashion.

2. A method for relative pose estimation: To track the trajectory chosen at every
cycle, the pose of the vehicle must be tracked. We demonstrate a relative pose
estimation system using a downward facing camera and a sonar, which is utilized
by the controller for tracking the trajectory (Section 2.5).

3. A method to deal with perception uncertainty: Most planning schemes either as-
sume that perception is perfect or make simplistic assumptions of uncertainty. We
introduce the concept of making multiple, relevant yet diverse predictions for in-
corporating perception uncertainty into planning. The intuition is predicated on
the observation that avoiding a small number of ghost obstacles is acceptable
as long as true obstacles are not missed (high recall, low precision). The details
are presented in Section 2.4. We demonstrate in experiments the efficacy of this
approach as compared to making only a single best prediction.

In summary our list of contributions are:

• Budgeted near-optimal feature selection and fast non-linear regression for monoc-
ular depth prediction.

• Real time relative vision-based pose estimation.
• Multiple predictions to efficiently incorporate uncertainty in the planning stage.
• First complete receding horizon control implementation on a UAV with monoc-

ular vision.

2 Approach
2.1 Hardware and Software Overview

In this section we describe the hardware platforms used in our experiments. De-
veloping and testing all the integrated modules of receding horizon is very chal-
lenging. Therefore we assembled a rover (Figure 3(a)) in addition to a UAV (Figure
3(b)) to be able to test various modules separately. The rover also facilitated parallel
development and testing of modules. Here we describe the hardware platforms and
overall software architecture.



4 Dey et al.

(a) Rover assembled with the same control
chips and perception software as UAV for rapid
tandem development and validation of modules.

(b) Quadrotor used as our development plat-
form.

Fig. 3 Rover and Quadrotor platforms used in experiments.

2.1.1 Rover
The skid-steered rover (Figure 3(a)) uses an Ardupilot microcontroller board [1]

which takes in high level control commands from the planner and controls the four
motors to achieve the desired motion.

Other than the low-level controllers, all other aspects of the rover are kept exactly
the same as the UAV to allow seamless transfer of software. For example, the rover
has a front facing PlayStation Eye camera which is also used as the front facing
camera on the UAV.

A Bumblebee color stereo camera pair (1024×768 at 20 fps) is rigidly mounted
with respect to the front camera using a custom 3D printed fiber plastic encasing.
This is used for collecting data with groundtruth depth values (Section 2.2) and
validation of planning (Section 2.6). We calibrate the rigid body transform between
the front camera and the left camera of the stereo pair. Stereo depth images and
front camera images of the environment are recorded simultaneously while driving
the rover around using a joystick. The depth images are then transformed to the front
camera’s coordinate system to provide groundtruth depth values for every pixel. The
training depth images are from a slightly different perspective than encountered by
the UAV during flight, but we found in practice that depth prediction performance
generalized well. Details in Section 2.2.

2.1.2 UAV
Figure 3(b) shows the quadrotor we use for our experiments. Figure 4 shows the

schematic of the various modules that run onboard and offboard. The base chassis,
motors and autopilot are assembled using the Arducopter kit [1]. Due to drift and
noise of the IMU integrated in the Ardupilot unit, we added a Microstrain 3DM
GX3 25 IMU which is used to aid real time pose estimation. There are two PlaySta-
tion Eye cameras: one facing downwards for real time pose estimation, one facing
forward. The onboard processor is a quad-core ARM based computer which runs
Ubuntu and ROS [26]. This unit runs the pose tracking and trajectory following
modules. A sonar is used to estimate altitude. The image stream from the front
facing camera is streamed to the base station where the depth prediction module
processes it; the trajectory evaluation module then finds the best trajectory to follow
to minimize probability of collision and transmits it to the onboard computer where
the trajectory following module runs a pure pursuit controller to do trajectory track-
ing [7]. The resulting desired velocity control commands are sent to the Ardupilot



Vision and Learning for Deliberative Monocular Cluttered Flight 5

which sends low level control commands to the motor controllers to achieve the
desired motion.

Fig. 4 Schematic diagram
of hardware and software
modules

2.2 Monocular Depth Prediction
In this section we describe the depth prediction approach from monocular im-

ages, and the fast non-linear regression method used for regression.
An image is first gridded up into non-overlapping patches. We predict the depth

in meters at every patch of the image (Figure 5 yellow box). For each patch we
extract separate features which describe the patch, the full column containing the
patch (Figure 5 green box) and the column of three times the patch width (Figure
5 red box), centered around the patch. The final feature vector for a patch is the
concatenation of the feature vectors of all three regions. When a patch is seen by
itself it is very hard to tell the relative depth with respect to the rest of the scene. But
by adding the features of the surrounding area of the patch, more context is available
to aid the predictor.

Fig. 5 The yellow box is an
example patch, the green box
is the column of the same
width surrounding it, and
the red box is the column
of 3 times the patch width
surrounding it. Features are
extracted individually at the
patch, and the columns are
concatenated together to form
the total feature representation
of the patch.

2.2.1 Description of features
In this part we describe in brief the features used to represent the patch. We

mainly borrow the features as used in previous work on monocular imitation learn-
ing [27] for UAVs, which are partly inspired by the work of Hoiem et al., [16] and
Saxena et al., [28]. We predict the depth at every patch which is then used by the
planning module.

• Optical flow: We use the Farneback dense optical flow [12] implementation in
OpenCV to compute for every patch the average, minimum and maximum optical
flow values.



6 Dey et al.

• Radon Transform: The radon transform captures strong edges in a patch [15].
• Structure Tensor: The structure tensor describes the local texture of a patch [14].
• Laws’ Masks: These describe the texture intensities [9]. For details on radon

transform, structure tensor and Laws’ masks usage see [27].
• Histogram of Oriented Gradients (HoG): This feature has been used widely in

the computer vision community for capturing texture information for object de-
tection [8]. For each patch we compute the HoG feature in 9 orientation bins.

• Tree feature: We use the per pixel fast classifier by Li et al. [23] to train a super-
vised tree detector. Li et al. originally used this for real time hand detection in
ego-centric videos. For a given image patch we use this predictor to output the
probability of each pixel being a tree. This information is then used as a feature
for that patch.

2.2.2 Data Collection
RGB-D sensors like the Kinect, currently do not work outdoors. Since camera

and calibrated nodding lidar setup is expensive and complicated we used a rigidly
mounted Bumblebee stereo color camera and the PlayStation Eye camera for our
outdoor data collection. This setup was mounted on the rover (Figure 3(a)). We
collected data at 4 different locations with tree density varying from low to high,
under varying illumination conditions and in both summer and winter conditions.
Our corpus of imagery with stereo depth information is around 16000 images and
growing. We will make this dataset publicly available in the near future.

2.2.3 Fast Non-linear Prediction
Due to harsh real-time constraints an accurate but fast predictor is needed. Re-

cent linear regression implementations are very fast and can operate on millions of
features in real time [22] but are limited in predictive performance by the inherent
linearity assumption. In very recent work Agarwal et al. [2] develop fast iterative
methods which use linear regression in the inner loop to obtain overall non-linear
behavior. This leads to fast prediction times while obtaining much better accuracy.
We implemented Algorithm 2 in [2] and found that it lowered the error by 10 %
compared to just linear regression, while still allowing real time prediction.

2.3 Budgeted Feature Selection
While many different visual features can be extracted on images, they need to

be computed in real time. The faster the desired speed of the vehicle, the faster the
perception and planning modules have to work to maintain safety. Additionally the
limited computational power onboard a small UAV imposes a budget within which
to make a prediction. Each kind of feature requires different time periods to extract,
while contributing different amounts to the prediction accuracy. For example, radon
transforms might take relatively less time to compute but contribute a lot to the pre-
diction accuracy, while another feature might take more time but also contribute
relatively less or vice versa. This problem is further complicated by the “group-
ing” effects where a particular feature’s performance is affected by the presence or
absence of other features.

Given a time budget, the naive but obvious solution is to enumerate all possible
combinations of features within the budget and find the group of features which
achieve minimum loss. This is exponential in the number of available features. In-
stead we use the efficient approach developed by Hu et al. [18] to select the near-
optimal set of features which meet the imposed budget constraints. Their approach



Vision and Learning for Deliberative Monocular Cluttered Flight 7

uses a simple greedy algorithm that first whitens feature groups and then recursively
chooses groups by the reduction in explained variance divided by the time to achieve
that reduction. A more efficient variant of this with equivalent guarantees, chooses
features by computing gradients to approximate the reduction in explained variance,
eliminating the need to “try” all feature groups sequentially. For each specified time
budget, the features selected by this procedure are within a constant factor of the
optimal set of features which respect that budget. Since this holds across all time
budgets, this procedure provides a recursive way to generate feature sets across time
steps.

Figure 6 shows the sequence of features that was selected by Hu et al.’s [18]
feature selection procedure. For any given budget only the features on the left up to
the specified time budget need to be computed.

Fig. 6 On the upper x-axis the
sequence of features selected
by Hu et al.’s method [18]
and the lower x-axis shows
the cumulative time taken for
all features up to that point.
The near-optimal sequence
of features rapidly decrease
the depth prediction error.
For a given time budget, the
sequence of features to the left
of that time should be used.

N
on

e	  
X/
Y	  
Co

or
	  

Ra
do

n	  
Co

lu
m
n	  

Ra
do

n	  
Pa
tc
h	  

Ra
do

n	  
Co

lu
m
n	  
3X

	  
Fl
ow

	  C
ol
um

n	  
HO

G	  
Co

lu
m
n	  

Ha
rr
is	  
Co

lu
m
n	  
3X

	  
Fl
ow

	  P
at
ch
	  

La
w
s	  P

at
ch
	  

HO
G	  
Co

lu
m
n	  
3X

	  
Fl
ow

	  C
ol
um

n	  
3X

	  
La
w
s	  C

ol
um

n	  
3X

	  
La
w
s	  C

ol
um

n	  
HO

G	  
Pa
tc
h	  

Tr
ee
	  fe

at
ur
e	  

320	  

370	  

420	  

470	  

520	  

570	  

0	  
0.
00
	  

0.
01
	  

0.
02
	  

0.
04
	  

0.
08
	  

0.
2	  

0.
22
	  

0.
25
	  

0.
26
	  

0.
56
	  

0.
71
	  

0.
74
	  

0.
75
	  

0.
91
	  

1.
21
	  

M
ea
n	  
Sq
ua

re
	  E
rr
or
	  (d

ep
th
)	  

TIme	  (seconds)	  

Fig. 7 Depth prediction
examples on real outdoor
scenes. Closer obstacles are
indicated by red.

2.4 Multiple Predictions
The monocular depth estimates are often noisy and inaccurate due to the chal-

lenging nature of the problem. A planning system must incorporate this uncertainty
to achieve safe flight. Figure 8 illustrates the difficulty of trying to train a predic-
tive method for building a perception system for collision avoidance. Figure 8 (left)
shows a ground truth location of trees in the vicinity of an autonomous UAV. Figure
8 (middle) shows the location of the trees as predicted by the perception system. In



8 Dey et al.

this prediction the trees on the left and far away in front are predicted correctly but
the tree on the right is predicted close to the UAV. This will cause the UAV to dodge
a ghost obstacle. While this is bad, it is not fatal because the UAV will not crash
but make some extraneous motions. But the prediction of trees in Figure 8 (right)
is potentially fatal. Here the trees far away in front and on the right are correctly
predicted whereas the tree on the left originally close to the UAV, is mispredicted
to be far away. This type of mistake will cause the UAV to crash into an obstacle it
does not know is there.

Fig. 8 Illustration of the
complicated nature of the
loss function for collision
avoidance. (Left) Groundtruth
tree locations (Middle) Bad
prediction where a tree is pre-
dicted closer than it actually
is located (Right) Fatal pre-
diction where a tree close by
is mispredicted further away. Groundtruth Bad Prediction Fatal Prediction 

3 m

10 m

3 m

10 m

3 m

10 m

Ideally, a vision-based perception system should be trained to minimize loss
functions which will penalize such fatal predictions more than other kind of pre-
dictions. But even writing down such a loss function is difficult. Therefore most
monocular depth perception systems try to minimize easy to optimize surrogate
loss functions like regularized L1 or L2 loss [28]. We try to reduce the probability
of collision by generating multiple interpretations of the scene to hedge against the
risk of committing to a single potentially fatal interpretation as illustrated in Figure
8. Specifically we generate 3 interpretations of the scene and evaluate the trajecto-
ries in all of them. The trajectory which is least likely to collide on average in all
interpretations is then chosen as the one to traverse.

One way of making multiple predictions is to just sample the posterior distribu-
tion of a learnt predictor. In order to truly capture the uncertainty of the predictor, a
lot of interpretations have to be sampled and trajectories evaluated on each of them.
A large number of samples will be from around the peaks of this distribution lead-
ing to wasted samples. This is not feasible given the real time constraints of the
problem.

In previous work [11], we have developed techniques for predicting a budgeted
number of interpretations of an environment with applications to manipulation,
planning and control. Batra et al., [4] have also applied similar ideas to structured
prediction problems in computer vision. These approaches try to come up with a
small number of relevant but diverse interpretations of the scene so that at least one
of them is correct. In this work, we adopt a similar philosophy and use the error
profile of the fast non-linear regressor described in Section 2.2 to make two addi-
tional predictions: The non-linear regressor is first trained on a dataset of 14500
images and it’s performance on a held-out dataset of 1500 images is evaluated. For
each depth value predicted by it, the average over-prediction and under-prediction
error is recorded. For example the predictor may say that an image patch is at 3
meters while it is actually either, on average, at 4 meters or at 2.5 meters. We round
each prediction depth to the nearest integer, and record the average over and under-
predictions as in the above example in a look-up table (LUT). At test time the pre-
dictor produces a depth map and the LUT is applied to this depth map, producing
two additional depth maps: one for over-prediction error, and one for the under-
prediction error.



Vision and Learning for Deliberative Monocular Cluttered Flight 9

Figure 9 shows an example in which making multiple predictions is clearly ben-
eficial compared to the single best interpretation. We provide more experimental
details and statistics in Section 3.
Fig. 9 The scene at top is
an example from the front
camera of the UAV. On the
left is shown the predicted
traversability map (red is high
cost, blue is low cost) result-
ing from a single interpreta-
tion of the scene. Here the
UAV has selected the straight
path (thick, green) which will
make it collide with the tree
right in front. While on the
right the traversability map
is constructed from multiple
interpretations of the image,
leading to the trajectory in
the right being selected which
will make the UAV avoid
collision.

2.5 Pose Estimation
As discussed before, a relative pose-estimation system is needed to follow the

trajectories chosen by the planning layer. We use a downward looking camera in
conjunction with a sonar for determining relative pose. Looking forward to deter-
mine pose is ill-conditioned due to a lack of parallax as the camera faces the direc-
tion of motion. There are still significant challenges involved when looking down.
Texture is often very self similar making it challenging for traditional feature based
methods [25, 20] to be employed.

In receding horizon, absolute pose with respect to some fixed world coordinate
system is not needed, as one needs to follow trajectories for short durations only. So
as long as one has a relative, consistent pose estimation system for this duration (3
seconds in our implementation), one can successfully follow trajectories.

We used a variant of a simple algorithm that has been presented quite often,
most recently in [17]. This approach uses a Kanade-Lucas-Tomasi (KLT) tracker
[32] to detect where each pixel in a grid of pixels moves over consecutive frames,
and estimating the mean flow from these after rejecting outliers. We do the outlier
detection step by comparing the variation of the flow vectors obtained for every
pixel on the grid to a specific threshold. Whenever the variance of the flow is high,
we do not calculate the mean flow velocity, and instead decay the previous velocity
estimate by a constant factor (Figure 12).

This estimate of flow however tries to find the best planar displacement between
the two patches, and does not take into account out-of-plane rotations, due to mo-
tion of the camera. Camera ego-motion is compensated using motion information
from the IMU. Finally the metric scale is estimated from sonar. We compute instan-
taneous relative velocity between the camera and ground which is integrated over
time to get position.

This process is computationally inexpensive, and can be run at very high frame
rates. Higher frame rates lead to smaller displacements between pairs of images,
which in turn makes tracking easier.



10 Dey et al.

Fig. 10 The overall flow of data and control commands between various modules. The pure pursuit
trajectory follower and low level control loops (red boxes) are shown in greater detail at the bottom.

We evaluated the peformance of the flow based tracker in motion capture and
compared the true motion capture tracks to the tracks returned by flow based tracker.
The resulting tracks are shown in Figure 11.

Fig. 11 Comparison of the differential flow tracker performance vs ground truth in MOCAP. Red
tracks are the trajectories in MOCAP, blue are those determined by the algorithm. Note that the for-
mulation of the receding horizon setup is such that mistakes made in following a specific trajectory
are forgiven up to an extent since we replan every few seconds.

2.6 Planning and Control
Figure 10 shows the overall flow of data and control commands. The front camera

video stream is fed to the perception module which predicts the depth of every pixel
in a frame, projects it to a point cloud representation and sends it to the receding
horizon control module. A trajectory library of 78 trajectories of length 5 meters

Fig. 12 Instances of failure of the pose tracking system over challenging surfaces. Note the absence
of texture in these 320x240 images. The figure shows the flow tracks corresponding to the points
on the grid. Red tracks show the uncorrected optical flow, while the green tracks (superimposed)
show the flow vectors ‘unrotated’ using the IMU.



Vision and Learning for Deliberative Monocular Cluttered Flight 11

is budgeted and picked from a much larger library of 2401 trajectories using the
maximum dispersion algorithm by Green et al. [13]. This is a greedy procedure
for selecting trajectories, one at a time, so that each subsequent trajectory spans
maximum area between it and the rest of the trajectories. The receding horizon
module maintains a score for every point in the point cloud. The score of a point
decays exponentially the longer it exists. After some time when it drops below a
user set threshold, the point is deleted. The decay rate is specified by setting the
time constant of the decaying function. This fading memory representation of the
local scene layout has two advantages: 1) It prevents collisions caused by narrow
field-of-view issues where the quadrotor forgets that it has just avoided a tree, sees
the next tree and dodges sideways, crashing into the just avoided tree. 2) It allows
emergency backtracking maneuvers to be safely executed if required, since there is
some local memory of the obstacles it has just passed.

Our system accepts a goal direction as input and ensures that the vehicle makes
progress towards the goal while avoiding obstacles along the way. The score for each
trajectory is the sum of three terms: 1) A sphere of the same radius as the quadrotor
is convolved along a trajectory and the score of each point in collision is added
up. The higher this term is relative to other trajectories, the higher the likelihood
of this trajectory being in collision. 2) A term which penalizes a trajectory whose
end direction deviates from goal direction. This is weighted by a user specified
parameter. This term induces goal directed behavior and is tuned to ensure that
the planner always avoids obstacles as a first priority. 3) A term which penalizes a
trajectory for deviating in translation from the goal direction.

The pure pursuit controller module (Figure 10) takes in the coordinates of the
trajectory to follow and the current pose of the vehicle from the optical flow based
pose estimation system (Section 2.5). We use a pure pursuit strategy [7] to track it.
Specifically, this involves finding the closest point on the trajectory from the robot’s
current estimated position and setting the target waypoint to be a certain fixed looka-
head distance further along the trajectory. The lookahead distance can be tuned to
obtain the desired smoothness while following the trajectory; a larger lookahead dis-
tance leads to smoother motions, at the cost of not following the trajectory exactly.
Using the pose updates provided by the pose estimation module, we head towards
this moving waypoint using a generic PD controller. Since the receding horizon con-
trol module continuously replans (at 5 hz) based on the image data provided by the
front facing camera, we can choose to follow arbitrary lengths along a particular
trajectory before switching over to the latest chosen one.

2.6.1 Validation of Modules
We validated each module separately as well as in tandem with other modules

where each validation was progressively integrated with other modules. This helped
reveal bugs and instabilities in the system.

• Trajectory Evaluation and Pure Pursuit Validation with Stereo Data on Rover:
We tested the trajectory evaluation and pure pursuit control module by running
the entire pipeline (other than monocular depth prediction) with stereo depth
images on the rover (Figure 13).

• Trajectory Evaluation and Pure Pursuit Validation with Monocular Depth on
Rover: This test is the same as above but instead of using depth images from
stereo we used the monocular depth prediction. This allowed us to tune the pa-
rameters for scoring trajectories in the receding horizon module to head towards
goal without colliding with obstacles.



12 Dey et al.

• Trajectory Evaluation and Pure Pursuit Validation with Known Obstacles in Mo-
tion Capture on UAV: While testing of modules progressed on the rover we as-
sembled and developed the pose estimation module (Section 2.5) for the UAV.
We tested this module in a motion capture lab where the position of the UAV as
well of the obstacles was known and updated at 120 Hz. (See Figure 2)

• Trajectory Evaluation and Pure Pursuit Validation with Hardware-in-the-Loop
(HWIL): In this test we ran the UAV in an open field, fooled the receding horizon
module to think it was in the midst of a point cloud and ran the whole system
(except perception) to validate planning and control modules. Figure 14 shows
an example from this setup.

• Whole System: After validating each module following the evaluation protocol
described above, we ran the whole system end-to-end. Figure 1 shows an exam-
ple scene of the quadrotor in full autonomous mode avoiding trees outdoors. We
detail the results of collision avoidance in Section 3.

Fig. 13 Receding horizon
control validation with rover
using depth images from
stereo. The bright green
trajectory is the currently
selected trajectory to follow.
Red trajectories indicate that
they are more likely to be in
collision.

Fig. 14 Hardware-in-the-
loop testing with UAV in
open field. The receding
horizon module was fooled
into thinking that it was in the
midst of a real world point
cloud while it planned and
executed its way through it.
This allowed us to validate
planning and control without
endangering the UAV.

3 Experiments
We analyze the performance of our proposed deliberative approach in this sec-

tion. All the experiments were conducted in a densely cluttered forest area, while
restraining the drone through a light-weight tether.

Quantitatively, we evaluate performance by recording the average distance flown
autonomously by the UAV over several runs (at 1 m/s), before an intervention. An
intervention, in this context, is defined as the pilot overriding the autonomous system
to prevent the drone from an inevitable crash. Experiments were performed using the
multiple predictions approach and single best prediction. The comparison has been
shown in Fig. 15. Tests were performed in regions of high and low clutter density
(approx. 1 tree per 6× 6 m2 and 12× 12 m2, respectively). Multiple predictions
results in significantly better performance. In particular, the drone was able to fly
without intervantion over a 137 m distance for low density regions. The difference is
even higher in case of high-density regions where committing to a single prediction
can be even more fatal.



Vision and Learning for Deliberative Monocular Cluttered Flight 13

Table 1 Success rate of
avoiding trees.

Multiple Predictions Single Prediction
Total Distance 1020 m 1010 m

Large Trees Avoided 93.1 % 84.8 %
Small Trees Avoided 98.6 % 95.9 %

Overall Accuracy 96.6 % 92.5 %

Further, we evaluate the success rate for avoiding large and small trees using our
proposed approach (Table 1). We are able to avoid 96% of all trees over a total cov-
ered distance of more than 1 km. Failures are broken down by the type of obstacle
the UAV failed to avoid, or whether the obstacle was not in the field-of-view (FOV).
Overall, 39% of the failures were due to large trees and 33% on hard to perceive
obstacles like branches and leaves. As expected, the narrow FOV is now the least
contributor to failure cases as compared to a more reactive control strategy [27].
This is intuitive, since the reactive control is myopic in nature and our deliberate
approach helps overcome this problem as described in the previous sections. Figure
16 shows some typical intervention examples.
Fig. 15 (a) Average distance
flown by the drone before
a failure. (b) Percentage of
failure for each type. Red:
Large Trees, Yellow: Thin
Trees, Blue: Foliage, Green:
Narrow FOV.

0	  

20	  

40	  

60	  

80	  

100	  

120	  

140	  

160	  

Low	  Density	  Region	   High	  Density	  Region	  

Av
er
ag
e	  
Di
st
an

ce
	  T
ra
ve
lle
d	  
be

fo
re
	  F
ai
lu
re
	  (m

)	  
Single	  World	   MulBple	  World	  

33

9%	  19

39

Fig. 16 Examples of interventions: (Left) Bright trees saturated by sunlight from behind (Second
from left) Thick foliage (Third from left) Thin trees (Right) Flare from direct sunlight. Camera/lens
with higher dynamic range and more data of rare classes should improve performance.

4 Conclusion
While we have obtained promising results, a number of challenges remain: better

handling of sudden strong wind disturbances and control schemes for leveraging
the full dynamic envelope of the vehicle. In ongoing work we are moving towards
complete onboard computing of all modules to reduce latency. We can leverage
other sensing modes like sparse, but more accurate depth estimation from stereo,
which can be used as “anchor” points to improve dense monocular depth estimation.
Similarly low power, light weight lidars can be actively foveated to high probability
obstacle regions to reduce false positives and get exact depth. Another central future
effort is to integrate the purely reactive [27] approach with the deliberative scheme
detailed here, for better performance.

References
1. URL http://dev.ardupilot.com



14 Dey et al.

2. Agarwal, A., Kakade, S.M., Karampatziakis, N., Song, L., Valiant, G.: Least squares revisited:
Scalable approaches for multi-class prediction. arXiv preprint arXiv:1310.1949 (2013)

3. Bachrach, A., He, R., Roy, N.: Autonomous flight in unknown indoor environments. Interna-
tional Journal of Micro Air Vehicles (2009)

4. Batra, D., Yadollahpour, P., Guzman-Rivera, A., Shakhnarovich, G.: Diverse m-best solutions
in markov random fields. In: Computer Vision–ECCV 2012, pp. 1–16. Springer (2012)

5. Beyeler, A., Zufferey, J.C., Floreano, D.: Vision-based control of near-obstacle flight. Au-
tonomous robots (2009)

6. Buehler, M., Iagnemma, K., Singh, S.: Special issue on the 2007 darpa urban challenge, part
i, ii, iii. JFR (2008)

7. Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Tech. rep., DTIC
Document (1992)

8. Dalal, N., Triggs, B., Schmid, C.: Human detection using oriented histograms of flow and
appearance. In: ECCV (2006)

9. Davies, E.R.: Machine vision: theory, algorithms, practicalities (2004)
10. Dey, D., Geyer, C., Singh, S., Digioia, M.: A cascaded method to detect aircraft in video

imagery. IJRR (2011)
11. Dey, D., Liu, T.Y., Hebert, M., Bagnell, J.A.D.: Contextual sequence optimization with appli-

cation to control library optimization. In: RSS (2012)
12. Farnebäck, G.: Two-frame motion estimation based on polynomial expansion. In: Image Anal-

ysis (2003)
13. Green, C., Kelly, A.: Optimal sampling in the space of paths: Preliminary results. Tech. Rep.

CMU-RI-TR-06-51, Robotics Institute, Pittsburgh, PA (2006)
14. Harris, C., Stephens, M.: A combined corner and edge detector. In: Alvey vision conference

(1988)
15. Helgason, S.: Support of radon transforms. Advances in Mathematics (1980)
16. Hoiem, D., Efros, A.A., Hebert, M.: Geometric context from a single image. In: ICCV (2005)
17. Honegger, D., Meier, L., Tanskanen, P., Pollefeys, M.: An open source and open hardware

embedded metric optical flow cmos camera for indoor and outdoor applications. In: ICRA
(2013)

18. Hu, H., Grubb, A., Bagnell, J.A., Hebert, M.: Efficient feature group sequencing for anytime
linear prediction. arXiv:1409.5495 (2014)

19. Kelly, A., et al.: Toward reliable off road autonomous vehicles operating in challenging envi-
ronments. IJRR (2006)

20. Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: ISMAR
(2007)

21. Knepper, R., Mason, M.: Path diversity is only part of the problem. In: ICRA (2009)
22. Langford, J., Li, L., Strehl, A.: Vowpal Wabbit (2007)
23. Li, C., Kitani, K.M.: Pixel-level hand detection in ego-centric videos. In: CVPR (2013)
24. Matthies, L., Brockers, R., Kuwata, Y., Weiss, S.: Stereo vision-based obstacle avoidance for

micro air vehicles using disparity space. In: ICRA (2014)
25. Newcombe, R.A., Lovegrove, S.J., Davison, A.J.: Dtam: Dense tracking and mapping in real-

time. In: ICCV (2011)
26. Quigley, M., Conley, K., Gerkey, B.P., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A.Y.:

Ros: an open-source robot operating system. In: ICRA Workshop on Open Source Software
(2009)

27. Ross, S., Melik-Barkhudarov, N., Shankar, K.S., Wendel, A., Dey, D., Bagnell, J.A., Hebert,
M.: Learning monocular reactive uav control in cluttered natural environments. In: ICRA
(2013)

28. Saxena, A., Chung, S.H., Ng, A.Y.: Learning depth from single monocular images. In: NIPS
(2005)

29. Scherer, S., Singh, S., Chamberlain, L.J., Elgersma, M.: Flying fast and low among obstacles:
Methodology and experiments. IJRR (2008)

30. Schmid, K., Lutz, P., Tomić, T., Mair, E., Hirschmüller, H.: Autonomous vision-based micro
air vehicle for indoor and outdoor navigation. JFR (2014)

31. Srinivasan, M.V.: Visual control of navigation in insects and its relevance for robotics. Current
opinion in neurobiology (2011)

32. Tomasi, C., Kanade, T.: Detection and tracking of point features. School of Computer Science,
Carnegie Mellon Univ. (1991)

33. Wendel, A., Maurer, M., Graber, G., Pock, T., Bischof, H.: Dense reconstruction on-the-fly.
In: CVPR (2012)


