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Abstract This paper explores the use of unmanned aerial vehicles (UAVs) in wild-
fire monitoring. To begin establishing effective methods for autonomous monitor-
ing, a simulation (FLAME) is developed for algorithm testing. To simulate a wild-
fire, the well established FARSITE fire simulator is used to generate realistic fire be-
havior models. FARSITE is a wildfire simulator that is used in the field by Incident
Commanders (IC’s) to predict the spread of the fire using topography, weather, wind,
moisture, and fuel data. The data obtained from FARSITE is imported into FLAME
and parsed into a dynamic frontier used for testing hotspot monitoring algorithms.
In this paper, points of interest along the frontier are established as points with a
fireline intensity (British-Thermal-Unit/feet/second) above a set threshold. These
interest points are refined into hotspots using the Mini-Batch K-means Clustering
technique. A distance threshold differentiates moving hotspot centers and newly
developed hotspots. The proposed algorithm is compared to a baseline for minimiz-
ing the sum of the max time untracked J(t). The results show that simply circling
the fire performs poorly (baseline), while a weighted-greedy metric (proposed) per-
forms significantly better. The algorithm was then run on a UAV to demonstrate the
feasibility of real world implementation.

1 Introduction

Recent developments in sensing technology have made possible low cost, reliable
unmanned aerial vehicles (UAVs). These field robots are being implemented in var-
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ious application domains, but specifically show promise in applications hazardous
for humans. Studying wildfires has an obvious benefit when considering the human
cost spent combating them.

One of the main issues in combating wildfires is monitoring the progression of
the fire over time (Kremens et al, [2001). Live fire frontier monitoring can help
produce quicker decisions and result in better resource allocation and fire man-
agement (Koulas, |2009). During wildfires, the information available to the Incident
Commander (IC) is critical. Current methods of tracking a fire involve a human pilot
flying several miles away from the fire and verbally reporting to the IC what trends
they see in the fire. Satellite imaging is also available but is often rendered useless
by smoke. In 2012, there were a total of 67,774 fires, destroying 9.3 million acres,
and costing over $1.9 billion to suppress in the U.S. alone (Center, 2015)). Large
aircraft can negatively affect the fireline, for example if flown too low (below 1,000
ft), wake vortices from the windtips produce wind gusts which can cause torching
and spotting (Groupl [1996)).

Fig. 1: Wildfire simulation example (red areas correspond to hotter areas of the fire).
We propose a weighted-greedy algorithm for optimizing the monitoring trajectories
of aerial vehicles in wildfire scenarios.

This paper presents tests of different hotspot monitoring algorithms to gather im-
portant information for the Incident Commander (IC) managing the wildfire. This
research aims to help improve a UAV’s effectiveness in gathering valuable informa-
tion for the IC. To simulate wildfires, a program developed by the Department of
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Agriculture and Forest Service is used. FARSITE is a free program used by the U.S.
Forest Service, National Park Service, and more specifically ICs, to predict the fire’s
behavior using data on the topography, weather, wind, moisture, and fuel (USD|
2014). FARSITE exports various characteristics of the fire. While our simulation
(FLAME) uses fireline intensity data (BTU/ft/s), other fire metrics like flame length
and rate of spread also be incorporated. See figure|[I]for a fireline intensity map of a
simulated fire.

Robotic monitoring has become a hot research topic in recent years, due to robots
playing a more integral role in collecting environmental data. This has led to a va-
riety of monitoring algorithms (Cassandras et all 2011} [Lan and Schwager, [2013|
Smith et al, 2011} |Smith and Rus| 2010} |Smith et al, 2012). Wildfires are highly
unpredictable, acting as a unique dynamic frontier. Dynamic monitoring has been
explored (Bertozzi et al| 2005} |Smith et al, 2011), but fire frontier monitoring is a
largely unexplored domain. Our simulator (FLAME) models a dynamic fire fron-
tier and uses techniques like Mini-Batch K-Means Clustering to achieve a similar
problem formulation as related monitoring research.

Tracking the most volatile locations on the fireline will give valuable informa-
tion for the IC. These hotspots will be intelligently monitored by the UAV, using
algorithms for minimizing the time hotspots are left unmonitored.

While wildfires were the chosen domain, this research is not limited to wildfires.
Similar application domains with dynamic frontiers include: algae blooms, pollution
spills, and military battles (Marthaler and Bertozzi, [2004} [Susca et al, |2008)). These
similar domains can also be analyzed using the techniques developed in this paper.

The main novelties of this paper include: (1) a simulation (FLAME) which uses
realistic fire modeling software for accurate fire characteristics, (2) a novel fire track-
ing algorithm which outperforms existing methods, (3) the first investigation into
adaptive monitoring of hotspots along a dynamic frontier, and (4) hardware exper-
iments demonstrating the ability to implement our work with existing technology.
Taken together, these contributions provide a new approach to the general problem
of monitoring dynamic frontiers.

The remainder of this paper is organized as follows. First, we will establish the
current state of similar research (Section [2). Following that, we will overview the
problem and assumptions we made during our investigation (Section [3). Next, we
describe the simulation and a novel approach to frontier monitoring (Section [).
Finally, the algorithm is described in detail in (Section E]) and the simulation results
are presented (Section[6), and the hardware experiments are discussed (Section|[7)).

2 Related Work

Work on autonomous information gathering began with early work in sequential
hypothesis testing (Wald, |1945)), which focused on determining which experiments
could efficiently classify the characteristics of an unknown. This line of research
developed into more general approaches and evolved into the field of active per-



4 Ryan C. Skeele and Geoffrey A. Hollinger

ception (Bajcsy, [1988). Similar insights led to using optimization techniques on
robotic information gathering problems, and researchers later developed algorithms
for minimizing long-term information uncertainty (Cassandras et al, 2011} 2013).

Robotic systems are becoming more commonly used as mass data-gathering
tools by scientists (Dunbabin and Marques, [2012| [Hollinger et al, 2012, |Smith et all
2011). Robots are already collecting large datasets on environmental change. Algae
blooms, pollution, and other climate variables are application domains for persis-
tent monitoring techniques. Persistent/adaptive monitoring in robotics is currently a
growing research topic. Prior work has explored different approaches to monitoring
stationary and dynamic feature points. While these adaptive sampling techniques
focus on optimizing uncertainty levels in static (Cassandras et al, 2011} |Lan and
Schwager, [2013}, [Smith and Rus} [2010) and in dynamic environments (Smith et al,
2011} 2012), prior work often focuses on systems in obstacle-free environments.
Some research has examined collision avoidance (Hollinger and Sukhatmel [2013]
Soltero et al, 201 1)), but adaptive sampling along dynamic frontiers remains an on-
going research problem.

In (Casbeer et all [2005)), fire frontier tracking was integrated into a simulation for
determining UAV tracking accuracy of the fire perimeter. Their UAVs follow a cir-
cular path around the fire similar to our baseline. However, our metric is to track the
most active parts of the fire. We compare the baseline against our weighted-distance
algorithm. Our research presents the first investigation into adaptive monitoring of
hotspots along a dynamic frontier. We span the domains of hotspot monitoring and
dynamic frontier tracking to evaluate path planning techniques in our FLAME sim-
ulator. This line of work allows us to test new algorithms in real-world scenarios.

3 Problem Formulation

We will now formally introduce the problem domain and the assumptions we made.
We will also introduce the metric we use to evaluate our algorithm against the base-
line.

We assume that GPS and communication between the IC and the vehicle are
always available. This means the UAV can always localize itself and never needs to
return to the starting location to transfer collected data. We assume the UAV always
has the simulated fire frontier in order to find the hotspot locations. Additionally,
the UAV is assumed, for comparison purposes, to have unlimited endurance.

Each hotspot has a corresponding time since last tracked by the UAV and the
maximum time its been left untracked (¢) in the past. The sum of ¢ of all hotspots
was chosen as the metric to evaluate the effectiveness of an algorithm. In this paper,
fireline intensity is used as the crucial information needed by the IC. The intensity
is monitored through the clustering into hotspots, directly relating to the goal of
providing the IC with up-to-date information about the fire progression.
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where ¢ is max time untracked

The goal is to minimize the metric J(¢), which corresponds to timely hotspot
monitoring, through an optimized trajectory for the UAV.

4 FLAME Simulation

We will now explain our simulation and how we developed each of the different
components. Figure 2] should be used as a reference of the state transitions in the
simulation. There are two aspects to the weighted-greedy algorithm, picking which
hotspot to go to, and how to get there.

start —| Fire Progression Extract Frontier

Update Pose Baseline Planner

Algorithm Find Path Cost Track Hotspots

Fig. 2: State diagram of FLAME

Fire data is generated using FARSITE, the wildfire simulator currently used by
ICs during wildfire management (USD) [2014). The data is exported in the form of
time of arrival, and a measurable characteristic of the fire. In this work we use the
fireline intensity at each location. As stated above, the task is to minimize the sum
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of max time untracked (¢) over all hotspots. At mission start, the UAV must first
find the fire and begin identifying the hotspot regions.

Tracking a hotspot is done by calculating the distance between a previous set of
hotspots relative to a new set. To determine when a hotspot moved as the fire pro-
gressed, a threshold is implemented. If a hotspot is not within the distance threshold
of any previous hotspots, it is then classified as a new hotspot. Even after careful
tuning, this approach can still lead to some untracked hotspots where the hotspot
existence is too short for any response by the UAV.

To identify hotspots, all points along the frontier with a fireline intensity above
a normalized threshold are parsed using a clustering technique called Mini-Batch
K-means (Lloyd, [1982). K-means clustering was chosen because it directly relates
the number of interest points (how active the fire is) to the number of cluster centers
(hotspots). The desirable amount of clusters (K) changes as the fire evolves. We
actively determine the K value for adaptive hotspot extraction with the following
formula. With K as the number of centers, and N as the number of interest points,

K =+/N/2 )

FLAME uses A* path planning for generating paths from the UAV to hotspot
locations around the fire. This method works better for estimating path cost over a
simple Euclidean distance estimate due to the spherical tendency of the fire spread.
Other similar methods where explored to increase efficiency, such as Jump Point
Search. Jump Point Search gives respectable speed gains in environments with large
open spaces, while the UAVs path remained mostly along the fire frontier. Methods
like wall-following could provide faster simulation times, but lack expandability to
more complex frontiers, and provide less accurate path costs. Due to the shape of
the fire, any benefits of these alternatives were determined to be inconsequential. It
was therefore determined to use the A* search algorithm as the UAVs path planner.

A cost map is passed to the A* algorithm, and is generated by applying a blur
to the map of the fire up to that point in time and assigning a high cost to areas
within the fire. This helps ensure the path generated for the UAV is not within dan-
gerous proximity of the fire, but can still be navigated close enough to monitor the
hotspots. The algorithms were tested over seven different fires generated in FAR-
SITE. The baseline and proposed algorithm are described in pseudo code in Algo-
rithms [T] and [2} A state diagram of FLAME is provided in figure [2] The algorithm
state is weighted, but may be replaced with any tracking algorithm for testing.

5 ALGORITHMS

The proposed algorithm is evaluated against a baseline in the following tests. The
following sections will describe each algorithm and how it was implemented in the
FLAME simulation. The first monitoring technique described is used as the baseline
comparison. It exemplifies current tactics utilized in real world wild fire monitoring,
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and prior research UAV fire monitoring (Casbeer et al, 2005). This is compared to
our proposed approach, a weighted-greedy algorithm that moves to the hotspot that
has remained untracked the longest with a tunable parameter of distance from the
UAV. Figure [3] should be used as a reference of the difference between the two
algorithms behaviors.

Weighted-Greedy A* path Baseline: Circling

(a) UAV monitoring the fire using proposed al-  (b) UAV monitoring the fire by constant cir-
gorithm identifies and tracks the most impor-  cling will continue regardless of the state of
tant part of the fire the fire.

Fig. 3

5.1 Baseline

Traveling parallel to the dynamic fire frontier is used as a baseline model. Calculat-
ing a 90 degree transformation of the vector from the UAVs current location to the
nearest point on the fire frontier gives the travel vector of the UAV. Maximum and
minimum distance thresholds are imposed on the UAV so it can then move along
the frontier monitoring hotspots while maintaining a safe distance from the fire. We
use this as a baseline comparison based on the work of (Casbeer et al, 2005).

5.2 Weighted-Greedy

The weighted-greedy algorithm checks the time untracked of every live hotspot,
calculates the distance to it, and targets the one with the highest score. Unlike the
baseline, the weighted-greedy algorithm makes target decisions based on the current
state of the hotspots.

This is done using the following formula where H is the target hotspot, T is the
time untracked of each hotspot and C is the path cost to each hotspot:
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Algorithm 1 Baseline Algorithm

: Inputs: UAV _Location, frontier
: for all points in frontier do
points.distance = \/ (points.x - UAV _location.x)? + (points.y - UAV _location.y)?
end for
: closest_point = min(points.distance)
: vector_to_nearest = ([UAV _location.x - closest.point.x], [UAV _location.y - closest.point.y])
: normalized_vector = vector_to_nearest / distance_to_nearest
: if dist_to_nearest > max_distance_to_fire then
travel_vector = vector_to_nearest
10: else if dist_to_nearest < min_distance_to_fire then
11: travel_vector = -vector_to_nearest
12: else
13: travel_vector = (-vector_to_nearest.x, vector_to_nearest.y)
14: end if
15: path = travel_vector

b

Algorithm 2 Weighted Algorithm

1: Inputs: hotspots{location, time_untracked}, c,, UAV _location
2: for all h in hotspots do
3: h.path, h.path_cost = ASTAR(h.location, UAV _location)

4: h.score = h.time_untracked — o * path_cost(h)
5: if hotspot.score > target_hotspot.score then
6: target_hotspot = h

7: end if

8: end for

9

: path = target_hotspot.path

H = argmin T, — a *Cp, A3)
h

The proposed algorithm accounts for the distance to each hotspot when choosing
the targeted hotspot. The weighting factor « is a parameter evaluated in figures 5} @}
and [6] The use of a weighting factor addresses some sub-optimality of using just a
greedy algorithm. The weighting parameter helps intelligently pick a hotspot that
may not be the longest untracked but is closer to the vehicle. A greedy algorithm
will immediately move towards the hotspot with the longest time left untracked,
disregarding any nearby hotspots that may not have been untracked for nearly quite

as long.

6 Results

Using our FLAME simulator, we can compare our proposed weighted-greedy ap-
proach with traditional methods of monitoring of wildfires. The simulation was run
on an Intel 17-4702HQ processor with 8 gigabytes of RAM. The UAV’s decision and
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planning methods took an average of .74 seconds to complete. This is fast enough
for a UAV to implement in the field (see[7)).

In comparison to the baseline, the weighted algorithm provided substantial im-
provement over the course of the trials. The plots in Figures[5] 4] and[6]show the two
monitoring algorithms performance with different parameter settings. As previously
discussed, the weighting parameter («) is multiplied by path cost to the hotspot lo-
cation. The hotspot cutoff 3 is the normalized threshold for a spot along the fire to
be considered an interest point. This directly affects the total number of hotspots.
Tests ran with a lower 3 will generate a higher number of hotspots for the UAV to
track. Time on the X axis begins at first cluster appearance during the simulation.
The Y axis shows the results of the comparison metric J(t).

The averaged score over the seven fires are depicted as the bold lines. Around
each line, the standard error of the mean is represented by the shading. Figure [
shows the simulation results with a hotspot threshold 5 = .35. The plot shows the
results with a corresponding « value of .5. Our proposed algorithm performs signif-
icantly better than currently used approach.

soo| | === Weighted-Greedy

= Baseline

700

600

500

400

300

Comparison Metric

Time

(a) Weighting parameter o = .5 Hotspot Threshold g = .35

Fig. 4: Wildfire simulation, where the comparison metric is J(t) or the sum of max
time untracked of all hotspots. Lower is better. The weighting parameter « is set at
.5. The normalized threshold 3, for a spot along the fire to be considered an interest
point, is set to .35. A lower 3 corresponds to more hotspot locations. Error bars are
one SEM.

In figure [5] the simulation is run with a 3 equal to .25. The 3 value (.25) is the
lowest used and figure [5| shows the performance of both algorithms in an environ-
ment with the corresponding large set of hotspots.
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(a) Weighting parameter o = .5 Hotspot Threshold 3 = .25

Fig. 5: Wildfire simulation, where the comparison metric is J(t) or the sum of max
time untracked of all hotspots. Lower is better. The weighting parameter « is set at
.5. The normalized threshold 3, for a spot along the fire to be considered an interest
point, is set to .25. A lower /3 corresponds to more hotspot locations. Error bars are
one SEM.

Figure [6] depicts the simulation results with a hotspot threshold 3 at .45. This
trial uses the highest /5 (fewest number of hotspots), and shows the plots perfor-
mance with « value at .5. The standard error of the mean (SEM) for both algorithms
is significantly higher in this test environment. The results demonstrate the algo-
rithms ability to outperform the baseline in environments with only few clusters,
or many clusters. In all cases presented here the proposed algorithm showed sig-
nificant improvement over traditional wildfire monitoring methods. Our algorithm
better tracks the dynamic regions of a dynamic frontier, providing valuable data to
better track the frontier.

An interesting characteristic of the frontier monitoring is that it may be simplified
into a 1 dimensional problem. Each timestep the UAV must decide between two
options, if it wishes to move clockwise or counter-clockwise. It will be worth further
investigation into leveraging this characteristic.

7 Hardware Experiments

To demonstrate the feasibility of the proposed algorithm, we implemented the al-
gorithm on a live test. To test on hardware we set up the FLAME simulation as a
ground station that acted as live satellite data would for a real fire. The algorithm
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(a) Weighting parameter o = .5 Hotspot Threshold 3 = .45

Fig. 6: Wildfire simulation, where the comparison metric is J(t) or the sum of max
time untracked of all hotspots. Lower is better. The weighting parameter « is set at
.5. The normalized threshold 3, for a spot along the fire to be considered an interest
point, is set to .45. A lower /3 corresponds to more hotspot locations. Error bars are
one SEM.

then sent a live stream of coordinates to a UAV to monitor the fire. While a real fire
was not used for purpose of this test (for safety reasons), we are able to demonstrate
that a UAV can effectively perform these tasks.

We converted FLAME into a ROS package to use the MAVROS plugins (Quigley
et al, 2009). MAVROS acted as a communication bridge between FLAME and the
flight controller on the UAV. This allowed us to update the UAVs path in time with
the simulation. We used a tethered IRIS+ quadcopter as the platform for these exper-
iments |/l We ran the experiment for over 10 minutes, about half the max flight time
of the vehicle. The experiment was performed outdoors in about a 60ft x 60ft area.
The simulation coordinates were scaled and transformed to GPS degrees to support
sending waypoints. We present the path of the vehicle around the fire in figure[§]

The UAV successfully followed the trajectories generated in the simulation to the
best locations along the fire to monitor it as it spread. This illustrates our ability to
begin introducing robotic monitoring into these dynamic monitoring situations and
gather valuable data from it.
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(a) A 3d view of our flight log in (b) Experiment set up, computer
Google Earth showing the flight dis- running live simulation and IRIS+
tance and trajectories. flying autonomously (tethered).

Fig. 7: Experimental setup and flight log results.

(a) The UAV first starts off a safe dis-

tance away from the fire and must (b) Upon reaching the frontier and

travel to the frontier. identifying a hotspot the UAV stays
outside the burn area as it grows.

(c) The UAV moves from one hotspot (d) Final fire size and flight log of our
to another to reduce the time untracked. field experiments.

Fig. 8: Four images demonstrating the algorithm path planning during field tests.

8 Conclusion

In this paper, we have introduced FLAME, a simulation developed for testing mon-
itoring techniques on a dynamic frontier, or more specifically a wildfire. The two
algorithms tested in the simulation have demonstrated that there is significant ben-



Aerial Vehicle Path Planning for Monitoring Wildfire Frontiers 13

efit in a weighted-greedy over the baseline method of flying around the fire fron-
tier. Using Mini-Batch K-Means Clustering for identifying hotspots, our proposed
weighted-greedy algorithm optimized for J(t), the sum of max time untracked of all
hotspots. Three different normalized hotspot thresholds (3) (.25, .35, .45) were used.
Data results showed the weighted-greedy algorithm with significant improvements
over the baseline.

These algorithms depend on global knowledge of the fire, or more specifically
where the hotspots are. Future work will include implementing a probabilistic model
of hotspot locations and studying the exploration/exploitation trade-off for tracking
and updating the model. In this paper we assume the UAVs have unlimited flight
time. However, the cost of flight with limited endurance is an important factor. Ad-
ditionally, hotspots are not all equal, and things such as risk to critical areas will
need to be considered. Continuation of the project will also focus on implementa-
tion of multiple UAVs and the introduction of common fire monitoring challenges,
including smoke and adverse weather conditions.
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