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Abstract This paper addresses the problem of autonomous navigation of a mi-
cro aerial vehicle (MAV) inside a constrained shipboard environment for inspec-
tion and damage assessment, which might be perilous or inaccessible for humans
especially in emergency scenarios. The environment is GPS-denied and visually
degraded, containing narrow passageways, doorways and small objects protruding
from the wall. This makes existing 2D LIDAR, vision or mechanical bumper-based
autonomous navigation solutions fail. To realize autonomous navigation in such
challenging environments, we propose a fast and robust state estimation algorithm
that fuses estimates from a direct depth odometry method and a Monte Carlo lo-
calization algorithm with other sensor information in an EKF framework. Then, an
online motion planning algorithm that combines trajectory optimization with re-
ceding horizon control framework is proposed for fast obstacle avoidance. All the
computations are done in real-time onboard our customized MAV platform. We val-
idate the system by running experiments in different environmental conditions. The
results of over 10 runs show that our vehicle robustly navigates 20m long corridors
only 1m wide and goes through a very narrow doorway (66cm width, only 4cm
clearance on each side) completely autonomously even when it is completely dark
or full of light smoke.

1 Introduction

Over the past few years, micro aerial vehicles (MAVs) have gained a wide popu-
larity in both military and civil domains. Surveillance and reconnaissance is one
area where they have made a huge impact. In this paper, we aim to develop a MAV
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that is capable of autonomously navigating through a ship to aid in fire control,
damage assessment and inspection, which might be dangerous or inaccessible for
humans. Such a constrained and GPS-denied environment poses various challenges
for navigating though narrow corridors and doorways, especially because it might
be visually degraded: potentially dark and smoke-filled. An illustrative picture is
shown in Fig. 1.

Fig. 1 Autonomous MAV for fire-detection inside a ship: The left picture shows MAV’s au-
tonomous flight through doorways. The right picture shows a testing scenario with fire.

For successful operation in such environments, we need to address several chal-
lenging problems. First, the MAV should be small enough to travel in the narrow
corridors with narrower doorways (66cm width). Therefore, only lightweight sen-
sors can be used, which provide limited measurement range and noisy data. Second,
the onboard computational resources are very limited while every module should
run in real-time, posing great challenges for pose estimation and motion planning.
Third, since the practical environment is potentially a dark and smoke-filled environ-
ment, it prevents us from using state-of-the-art visual navigation methods. Though
putting LED lights can give better illumination, it might not output a usable RGB
image under smoky conditions. Besides, clear corridors with few geometric features
or corridors with many small objects on the wall pose great difficulty for accurate
pose estimation and obstacle avoidance. In addition, air turbulence from the MAV
in confined spaces poses difficulty for precise control.

To address the above challenges, we build a robust and efficient autonomous
navigation system with the following contributions.

• A real-time 6DoF pose estimation system that can directly recover the relative
pose from a series of depth images and estimate the absolute pose of the MAV in
a given 3D map.

• A data fusion framework of odometry and absolute pose with other sensors to
provide fast and robust state estimation.

• An online motion planning algorithm using a modified trajectory optimization
method under receding horizon control framework.
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We demonstrate the effectiveness of our system through both simulation and field
experiments. The field experiment is performed in a constrained shipboard environ-
ment containing a 20m long, 1m wide corridor and a 66cm wide doorway. The width
of the vehicle is 58cm leaving only 4 cm clearance on both sides. We conducted
more than 10 runs in various environment conditions, from normal to complete dark
and smoke-filled environments to demonstrate autonomous navigation capabilities
of the MAV.

2 Related Work

In recent years, a number of autonomous navigation solutions have been proposed
for MAVs. Those solutions mainly differ in the sensors used for perception in the
autonomous navigation problem, the amount of processing that is performed on-
board/offboard and the assumptions made about the environment.

2D LIDAR has been extensively and successfully used for autonomous naviga-
tion for its accuracy and low latency [1–3]. However, those systems are usually only
suitable for structured or 2.5D environments. Recently, there are also many vision-
based navigation systems since cameras can provide rich information and have low
weight, etc. For example, a stereo camera is used in [4] [5] and a monocular camera
with IMU is used in [6–8], but vision is sensitive to illumination changes and could
not work in dark or smoky environments. More recently, RGB-D cameras have be-
come very popular for autonomous navigation of indoor MAVs [9–11] because they
can provide both image and depth. For example, in [10] a RGB-D visual odometry
method is proposed for real-time pose estimation of a MAV and a 3D map is created
offline. In [11], a fast visual odometry method is used for pose estimation and 3D
visual SLAM is used for constructing a 3D octomap in real-time.

Unfortunately, the existing autonomous navigation methods can not work in our
case since our application environment is a confined, complex visually degraded
3D environment that may be very dark or filled with smoke. For example, for state
estimation, vision-based methods [8, 10] could not work in our case due to that
it is a potentially dark and smoky environment. Besides, for obstacle avoidance,
2D LIDAR-based methods are also unqualified for this complex environment since
it only perceives planar information while there are many small objects (e.g. slim
cables and pipes) protruding from the wall in our environment. In addition, many
above papers’ motion planning methods either compute paths offline [2] [11] or
heavily rely on prior maps [1]. Some papers online generate steering angles to avoid
obstacles by vector field histogram [5] or waypoints by sampling based planners
(e.g. RRT*) [3]. However, steering angle is not suitable for precise control and RRT*
path is usually not smooth and not fast enough.

In this paper, we present a robust autonomous navigation system that can work
in challenging practical environments, which is based on our previous work [12].
However, our previous work only deals with the pose estimation problem while this
paper presents all the details of the whole system. In our system, we mainly use
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depth images for odometry estimation, localization and motion planning, which can
work in completely dark or even light smoke-filled environments. Besides, all the
components of the system run onboard on an ARM based embedded computer.

3 Approach

3.1 Real-time Pose Estimation

Pose estimation is required to allow the robot to be self aware of its placement in
the surroundings and hence allows it to plan appropriate paths to maneuver around
obstacles in the corridor.

3.1.1 Low-frequency Pose Estimation

Low frequency pose estimates are primarily based on the RGB-D sensor. This in-
cludes relative ego-motion of the robot calculated from depth images as well as the
absolute pose of robot calculated from the point cloud and a given 3D map.

Relative Pose Estimation A direct method based on [12, 13] is used to calcu-
late the relative pose estimation, which is much faster than state of the art ICP
method [14]. Let a 3D point R = (X ,Y,Z)T (measured in the depth camera’s co-
ordinate system) be captured at pixel position r = (x,y)T in the depth image Zt .
This point undergoes a 3D motion ∆R = (∆X ,∆Y,∆Z)T , which results in an image
motion ∆r between frames t0 and t1. Given that the depth of the 3D point will have
moved by ∆Z, the depth value captured at this new image location r+∆r will have
consequently changed by this amount:

Z1(r+∆r) = Z0(r)+∆Z (1)

This equation is called range change constraint equation.
For a pin hole camera model, any small 2D displacement ∆r in the image can be

related directly to the 3D displacement ∆R which gave rise to it by differentiating the
perspective projection equation with respect to the components of the 3D position:

∂ r
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where fx and fy are the normalised focal lengths.
Under small rotation assumption, if the camera moves with instantaneous trans-

lational velocity v and instantaneous rotational velocity ω with respect to the envi-
ronment, then the point R appears to move with a velocity
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dR
dt

= −v−ω×R (3)

with respect to the sensor.
Taking the first-order Taylor expansion of the term Z1(r+∆r) in Eq. 1 and sub-

stituting Eq. 3 and Eq. 2 into it gives us Eq. 4 where ∇Z1(r) = (Zx,Zy) are the
spatial derivatives of Z1(r). This equation generates a pixel-based constraint relat-
ing the gradient of the depth image ∇Z1 and the temporal depth difference to the
unknown pixel motion and the change of depth. In practice, in order to improve the
computation speed, the depth image is downsampled to 80×60 which is sufficient
to get an accurate estimation. Using Eq. 4, fast odometry can be calculated from
depth images.
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where ωx,ωy,ωz and vx,vy,vz are components of the rotation and traslation vectors.
However, in environments with few geometric features, this method will suffer

from the degeneration problem, for example when the camera can only see a ground
plane or parallel walls. In these “ill-conditioned” cases which are really common in
indoor environments, the proposed method will produce inaccurate estimates. We
use the “condition number” [15] to measure the degeneration degree of Eq. 4. When
severe degeneration happens, the estimation outputs a failure signal.

Absolute Pose Estimation To obtain the vehicle’s absolute pose in a given 3D
map, a Monte Carlo Localization (MCL) [16] algorithm is used. Though MCL has
been successfully used on ground robots [16], 6DoF pose state S = (x,y,z,φ ,θ ,ψ)
necessary for MAVs increases the complexity of the problem. We show that by
carefully designing the motion and observation model, MCL can work very well on
an embedded computer. More details can be found in our previous work [12].

1) Motion Model For each subsequent frame, we propagate the previous state
estimate according to the motion model p(St |St−1,ut). The motion command ut is
the visual odometry computed from Eq. 4. To account for unexpected motion, the
prediction step adds a small amount of Gaussian noise to the motion command for
each particle. The propagation equation is of the form:

St = St−1 +ut + et et ∼ N(0,σ2) (5)
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where ut is the odometry and et is the Gaussian noise. When odometry estimation
fails, we propagate the particle set using a noise-driven dynamical model

St = St−1 + e′t e′t ∼ N(0,σ ′2) (6)

where σ ′ is much bigger than σ .
2) Observation Model The belief of vehicle’s 6DoF state is updated according

to three different sources of sensor information in one observation Ot , namely depth
measurements dt from depth camera, roll θ̃t and pitch φ̃t measurements from IMU
and height measurement z̃t from ground plane detection or the point laser. The final
observation model is:

p(Ot |St) = p(dt , z̃t , φ̃t , θ̃t |St) = p(dt |St) · p(z̃t |St) · p(φ̃t |St) · p(θ̃t |St) (7)

The likelihood formulation is given by a Gaussian distribution. To improve the
computation efficiency, an endpoint observation model [16] is used for calculating
p(dt |St).

3.1.2 High-frequency Pose Estimation
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Fig. 2 Software architecture showing main
modules with update rates

For real-time control, low latency, accurate,
fast and robust estimate of the position and
orientation is required. We fuse data from
all of the sources providing motion infor-
mation to output high frequency state es-
timate as shown in the Fig. 2. We run a
high rate attitude estimator at 250Hz on the
flight controller unit (FCU) to stabilize the
robot’s angular motion. We also designed a
robust full state with 9DoF position estima-
tor capable of fusing data from optical flow
(downward facing camera), odometry and
localization (running onboard computer),
height measurement and inertial sensors us-
ing an EKF running on the FCU at 100Hz.
Such a setup allows to maintain a reliable
estimate of full current pose even when data
from a sensor/estimator degrades due to change in environment e.g. if optical
flow fails to find enough features on the floor to generate odometry, other sen-
sors/estimators provide enough information to estimate the current pose, therefore
maintaining system redundancy and allowing smooth operation of the motion con-
troller. Also, the input signals to the position estimator is pre-processed to produce
a smooth input and reject any outliers eg. a moving average with outlier rejection is
used for sonar. All these techniques together ensure the filter running on pixhawk
FCU doesn’t diverge due to outliers.
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3.2 Online Motion Planning

Online motion planning is needed to keep MAV safe by quickly avoiding the ob-
stacles which are represented by an online updated 3D occupancy grid [17]. Global
mission points for motion planning are specified by a human or a high level mission
planner. Here, we focus on local motion planning to generate collision-free trajec-
tories, which is divided into two steps: path planning to generate optimal waypoints
and spline fitting to generate optimal polynomial trajectories through waypoints.

3.2.1 Path Planning

We first search an optimal path, containing a series of safe waypoints to avoid the
obstacles. We adopt the receding horizon control (RHC) framework, which searches
the best path among an offline library [18]. In order to get a good path for different
environments, the library is usually dense with large amounts of paths which is time
consuming to check. Instead, we combine RHC with a modified CHOMP optimiza-
tion method [19]. RHC serves to provide a good initial guess and CHOMP further
optimizes it. Through the comparison in Section 4.3, this method is faster and better
than RRT* in corridor environments.

Each waypoint in the path contains 4 DOF {x,y,z,ψ(yaw)}, namely the flat out-
put space of quadrotor [20]. Let the path be ξ (s) : [0,1] 7→ R4 mapping from arc
length s to 4 DOF (ξ (0) is starting point, ξ (1) is ending point) such that:

min
ξ

J(ξ ) = w1 fobst(ξ )+w2 fsmooth(ξ )+ fgoal(ξ )

s.t. ξ (0) = ξ0

(8)

where w1,w2 are the weighting parameters of different cost functions. fobst(ξ ) is the
obstacle cost and fsmooth(ξ ) is the path smoothness cost as defined in CHOMP [19]:

fobst(ξ ) =
∫ 1

0
cobs(ξ (s))‖

d
dt

ξ (s)‖ds (9)

fsmooth(ξ ) =
1
2

∫ 1

0
‖ d

ds
ξ (s)‖2ds (10)

fgoal(ξ ) is the cost-to-go heuristic measuring distance between path endpoint
ξ (1) to global mission point ξg. We add this heuristic to free the endpoint for opti-
mization, while CHOMP doesn’t.

fgoal(ξ ) = ‖ξ (1)−ξg‖2 (11)

As mentioned before, we create an offline path library L containing 27 specif-
ically designed paths shown in Fig. 3(a). It is based on the structure property of
corridor, where obstacles usually lie on two sides of walls. So it is easy and fast to
find a safe path from the library.
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We align the library with current pose then select ξ ∗ = argminξ∈L J(ξ ) as the
initial guess and optimize it through modified CHOMP. We keep discrete waypoint
parametrization ξ0, ...ξn of the path as in [19] instead of a continuous path to speed
up the optimization. An optimization example during turning is shown in Fig. 3(b),
where the gradient pushes the path away from obstacles. Note that the end point
is freed for optimization, different from standard CHOMP algorithm because our
method is planning within a horizon and doesn’t directly search a path from start to
goal. A short horizon makes the optimization faster and more reactive.

(a) (b)

Fig. 3 (a) Initial path library. It is manually designed for the corridor environment where obstacles
usually lie on two sides. It includes straight line, turning arcs with different curvatures and lane
changing curves with parallel ending direction, corresponding to the three common flight patterns
in the corridor. (b) Path optimization in turning. The color grid represents the distance map, com-
puted from online 3D occupancy map [17]. The green curve represents the initial best path, blue
curves are the paths during optimization based on the gradient (yellow). The final optimized path
is in red.

3.2.2 Spline fitting

After getting path waypoints ξ0, ...ξn, we fit a continuous spline ξ (t) through them.
It specifies the pose MAV should be at each time. The polynomial spline allows us to
analytically compute feedforward control input for quadrotor [20], which guarantees
exponential tracking stability of the controller while waypoint following or steering
angle methods cannot.

We represent the spline as 5 segments of 6th order polynomials. To find the op-
timal polynomial coefficients, we formulate it as a quadratic programming (QP)
problem similar to [20, 21]. The cost function is to minimize the integration of L2
norm of snap, namely the 4th order derivative (wrt. time). The constraints are pass-
ing through waypoints and keeping derivative c1, ...,c4 continuous. A closed form
solution of QP with equality constraint could be found using Lagrange multipliers.
Tikhonov regularization [22] is used in case of QP matrix ill-condition problem.
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4 Experiments

4.1 System Setup

Fig. 4 Micro Air Vehicle platform

The platform we use for our experiment
is a customized MAV as shown in Fig.
4.1. It’s mainly composed of two com-
putation units. One unit is an ARM-
based Quadcore embedded computer
(Odroid XU3), responsible for high-
level task processing, such as odome-
try estimation, localization and motion
planning, etc. The other one is the Pix-
hawk FCU which is used for multi-
sensor data fusion and real-time con-
trol. A forward-looking RGB-D cam-
era is used for pose estimation and motion planning. A downward-looking optical
flow camera is used for velocity estimation and a point laser is used for height esti-
mation. Besides, a FLIR camera is used for fire detection.

We first conduct some experiments to validate the performance of our state esti-
mation and motion planning algorithms using the datasets recorded by carrying the
robot in the ship. Then, field experiments were performed on the ex-USS shadwell
to test the performance of the whole system. In the experiments, the RGB-D images
are streamed at frame rate of 15Hz with QVGA resolution. We create the offline 3D
maps by using LOAM system [23] and the map resolution is set to 4cm.

4.2 Pose Estimation Experiments

We test the odometry and localization algorithms by manually carrying our cus-
tomized MAV system. The experiment is conducted in a constrained and visually
degraded shipboard environment, which has a size of 16m × 25.6m × 4.04m. In
this environments, most of the time the RGB images are very dark as shown in Fig.
5, while the depth images are still very good. There are also some challenging loca-
tions where the depth camera can only see the ground plane, one wall or two parallel
walls, or even nothing when it is very close to the wall (minimum range >0.5m). In
such situations, the depth-based odometry will suffer from the degeneration prob-
lem. In our algorithm, we monitor the degeneration status. If the degeneration is too
severe, the odometry estimation method will not output motion estimation results,
but a failure indicator. Then, our localization algorithm will use the noise-driven
motion model to propagate the MCL particle set. In our experiment, we find that if
the odometry failure is relatively short in duration (less than 3 seconds), it is possi-
ble for the localization algorithm to overcome this failure entirely. The localization
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result is shown in Fig. 5. From the experimental result, we can see that our robot
can robustly localize its self even the odometry is not good.

Fig. 5 Localization in degraded visual environment: Pink: Odometry, Red: Localization. The cen-
ter plot shows the odometry, localization results with the 3D octomap. Pictures on both sides show
the RGB and depth images from onboard RGB-D camera.

4.3 Planning Experiments

A simulated depth camera based on 3D point cloud map is used to create an occu-
pancy grid. The mission planner then provides some goal points based on the prior
map, about 5m away from each other and local planner keeps replanning to reach
them. The pose history during simulation is shown as red curve in Fig. 6.

Fig. 6 An example trajectory calculated using path optimization with receding horizon control
through a simulated shipboard environment.

To demonstrate the quality of our method, we compare our path planning method
with RRT* and keep spline fitting part (minimizing snap) as the same. To bias RRT*,
the local goal points are set closer to each other (∼ 2 m) to greatly decrease the
search space. The comparison is implemented on the embedded computer and the
result is shown in Table .1. With bias, RRT* still needs more time than our method to
generate a valid path and the quality in terms of obstacle cost and snap cost is higher
than ours. This is mostly due to the fact that the corridor is a structured environment
where obstacles usually lie on two sides. So our path set method could quickly find
a smooth and safe path while RRT* needs many random samples in order to get a
valid and smooth path.



Robust Autonomous Flight in Constrained and Visually Degraded Environments 11

Table 1 Path planning comparison with RRT*. Dist stands for vehicle distance to the obstacle.

Methods Time(ms) Mean dist(m) Min dist Mean snap(m/s4) Max snap

RRT* 70 0.46 0.16 1.46 14.02
Our 30 0.47 0.18 0.58 2.50

An end-to-end offline path could also be computed from the prior map but blind-
ingly following it tends to cause a collision if there is big state estimation error.
Instead, the proposed online obstacle mapping and motion planning can guarantee
the safety. The goal points in our planner should be set properly so as to avoid be-
ing trapped in local dead-ends. Though offline path with online modification could
relieve the problem, it is not applicable in other unknown environments.

4.4 Autonomous Flight Test Results

The mission of the completely autonomous flights is to search, detect and locate fire
using only onboard sensors and computation resources. In our tests, the MAV needs
to operate in a variety of environments:

1. Narrow passageways and doorways: The most common shipboard environment.
The space constraints limit the vehicles size.

2. Areas with poor or no lighting: Become visually degraded. Performance of opti-
cal flow sensor decreases.

3. Areas filled with smoke and fire: Smoke density varies with fuel source. It
strongly affects the depth image and optical flow sensor.

Fig.7 shows the created offline point cloud map of the testing area and typical
sensor images in each environment. MAV is launched around the ‘start point’ and
flies autonomously in the 1 m wide, 20 m long corridor, with a tight doorway (66cm
wide, 8 cm clearance) and reaches the ‘end point’, while detecting fires.

Table 2 Autonomous Flight Results

Environment Total run Succeeded Rate

Normal 4 4 100%
Dark 7 5 71.4%

Smoky 9 5 55.5 %

We performed 20 experiments in this
testing area under the three environment
conditions. The vehicle pose of one experi-
mental run is shown in Fig. 8. The success
ratio of 20 runs is shown in Table 2. Failure
cases are usually due to quadrotors being
slightly rotated and stuck in the tight door-
way. It is difficult to cross the door in dense
smoke because the depth image is corrupted by smoke making it difficult for state
estimation and obstacle detection. Results show that our robot can work very well
in all the conditions except very dense smoke.

Runtime performance is also very important for MAVs since the onboard com-
putation abilities are limited. We record the performance including CPU usages of
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Fig. 7 Map and RGB and depth images of each environment condition from onboard RGB-D
cameras. From left to right: with lights on, with lights off, with fire and dense smoke.

Fig. 8 Localization result from one autonomous flight.

some key algorithms on the Odroid system shown in Table. 3. We use 300 particles
for MCL localization. When all the system modules are running, the total CPU us-
age is between 60 ∼ 65%. The experiment result shows our navigation system can
run in real-time by only using the onboard computation resources.

For fire detection, we use a lightweight FLIR-tau thermal camera to measure the
temperature of the environment. We segment the appropriate range of temperature
for fire, people etc. based on the thermal images. Anything over 100◦C is considered
to have a high probability of being fire or close to fire. Similarly, segmented blobs
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Table 3 Per-Frame Runtime Performance on the Embedded Computer

Name Algorithm Runtime
Mean Min Max StdDev

Odometry 18.3ms 8ms 25.8ms 5.2ms
Localization 65.8ms 45.8ms 97ms 16.5ms
Local Planning 29.2 ms 15.2 ms 37.8 ms 6.7 ms

with temperature close to 30◦C is considered to belong to a human being. The video
of a field experiment at Shadwell in Nov 2014 can be found at https://www.
youtube.com/watch?v=g3dWQCECwlY.

5 Conclusion

In this paper we have shown the feasibility of an autonomous fire detection MAV
system in a GPS denied environment with tough visibility conditions. This was
achieved without the need of any additional infrastructure on the ship. We achieved
autonomous flight with fully online and onboard state estimation and planning
through 1m wide passages while crossing doorways with only 8cm clearance. We
demonstrated 10 consecutive runs where the vehicle crossed completely dark, light
smoky passageway respectively and ended by detecting wood and diesel fires.

The next challenges are to increase the robustness and safety of the vehicle while
increasing flight time. This will involve improvements in both hardware and soft-
ware. The current size of vehicle is a little large, resulting in a very tight fit through
the ship doorways. In future, we intend to move from a quadrotor design to a sin-
gle/coaxial ducted rotor design to decrease size but increase flight time efficiency.
Currently, our sensor suite loses reliability in dense smoke conditions. We plan on
adding sensors which extend the range of environments our robot can successfully
navigate and inspect. On the software side, one important goal is to decrease the
dependency on a prior map for state estimation to make the system more adapt-
able to changing or damaged environments. Pursuing exploration and mapping in a
damaged environment poses many interesting research challenges.
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