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Abstract The inaugural RobotX competition was held in Singapore in Oct. 2014. The
purpose of the competition was to challenge teams to develop new strategies for tackling
unique and important problems in marine robotics. The joint team from Massachusetts
Institute of Technology (MIT) and Olin College was chosen as one of 15 competing teams
from five nations (USA, South Korea, Japan, Singapore and Australia). The team received
the surface vehicle platform, the WAM-V (Fig. 1) in Nov. 2013 and spent a year building
the propulsion, electronic, sensing, and algorithmic capabilities required to complete the
five tasks that included navigation, underwater pinger localization, docking, light sequence
detection, and obstacle avoidance. Ultimately the MIT/Olin team narrowly won first place
in a competitive field. This paper summarizes our approach to the tasks, as well as some
lessons learned in the process. As a result of the competition, we have developed a new
suite of open-source tools for feature detection and tracking, realtime shape detection from
imagery, bearing-only target localization, and obstacle avoidance. 1

Fig. 1 The WAM-V [7] on the water in Singapore at the RobotX competition.
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1 Introduction

Fig. 2 The “WAM-V” ASV platform used in the com-
petition. Sensor payload includes: GPS (green), 3D laser
scanner (yellow), camera (pink), and sonar transducer and
mount (blue).

The inaugural RobotX competition,
hosted by the association for un-
manned vehicle systems international
(AUVSI) Foundation, was held in Sin-
gapore in October 2014. The moti-
vation for the competition was to in-
crease the capabilities of marine ve-
hicle systems to perform commer-
cial tasks and operate in the vast
and challenging ocean environment.
Much larger in scope than previous
competitions, such as RoboBoat and
RoboSub, this was the largest au-
tonomous surface vehicle (ASV) com-
petition ever held. In total 15 teams
competed from five different countries
(USA, South Korea, Singapore, Aus-
tralia, and Japan). Each of the 15 teams were provided with an identical platform, shown in
Fig. 2, and were responsible for equipping it with sensors, propulsion, electrical systems,
and onboard autonomy to achieve the tasks.

The competition consisted of five tasks:

• Task 1: Navigate through two sets of colored buoy gates;
• Task 2: Report the location of an underwater pinger and also the color of the closest

buoy to the pinger;
• Task 3: Identify the correct docking location based on a placard on the seawall and then

subsequently dock;
• Task 4: Find a buoy that is emitting an LED light pattern and then report the light pattern;
• Task 5: Enter an obstacle field through a buoy gate (specified by color) and then navigate

through a densely cluttered field of obstacles, and finally exit through the specified gate.

Each task had a unique scoring system and the sum of all task points was used to rank
teams. After three qualification days, the top six ranked teams advanced to the finals. In the
finals, the points accumulated in the last attempted run were used.

In this paper we summarize our approach to each of the five tasks. These required ba-
sic capabilities such as object detection and autonomy, as well as task-specific capabilities
such as pattern recognition and acoustic target localization. The remainder of the paper is
structured as follows: In Sec. 2, we detail our laser/vision based approach to object de-
tection and tracking for navigation tasks (required for Task 1, 2, 4, and 5). In Sec. 3, we
discuss our approach to specific vision-based pattern identification tasks (Task 3 and 4). In
Sec. 4, we present the particle-filter based acoustic localization system (Task 2). In Sec.
5, we present an overview of our approach to autonomy and control based on behavior-
based multi-objective optimization. In Sec. 6, we provide some details about the choice
of hardware used. Finally we provide some of the competition results in Sec. 7 and some
conclusions in Sec. 8.
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2 Object Detection, Tracking, and Classification

Algorithm 1 Object Detection and Tracking
Input: Laser scan
Output: Feature List
1: Cull points outside of desired sector
2: Downsample to voxel grid
3: Euclidean clustering
4: Update the persistent cluster list
5: Transform persistent features to world frame
6: Try to assign feature color through image sub-

windowing
7: Associate features and update tracked feature list

A prerequisite for Tasks 1, 2, 4, and 5 is
to be able to detect and track objects float-
ing on the water surface. Above-water per-
ception onboard the vehicle was achieved
through a combination of 3D laser and vi-
sion. Laser-based sensing was particularly
effective in this case since the water sur-
face only produced weak returns that could
be easily removed through laser intensity
filtering, leaving only solid objects such as
buoys.

Since laser provides limited color information, object detections were fed to a vision
system for classification. An overview of the approach is summarized in Algorithm 1.

2.1 Laser-Based Feature Detection

Each point in the laser scan, p = {r,φ ,θ , I}, is a tuple consisting of a range r, an azimuth φ ,
an elevation θ , and an intensity I. One scan of laser data consists of a collection of N points
P = {pi}i=1..N . The points are first culled using thresholds for minimum and maximum
range and azimuth, as well as minimum intensity:

Pc = {pi|rmin < ri < rmax, φmin < φi < φmax, Imin < Ii}. (1)

These points are then downsampled using a voxel grid and ordered into clusters, C =
{C j} j=1..J , C j = {P j,µ j}, where P j and µ j are the set of points and centroid of cluster j
respectively. We wish to be able to detect buoys at the maximum possible range, at which
point there may be only one or two returns from a buoy. In order to mitigate the impact
of false returns while still being able to track small features at long distances, we use a
temporal persistence filter. A persistent cluster list, C pcl = {C ,K}, is maintained, where
K is the “lifetime” of the cluster. As a new set of clusters arrives at time k, they are fused
with the persistent cluster list. For each new cluster, if its centroid, µ , is within ε of one of
the centroids of the clusters in C pcl , then the associated cluster’s lifetime is incremented,
otherwise the cluster is added to the persistent cluster list with a lifetime of K = 1. A laser
scan and associated camera image are shown in Fig. 3. This particular snapshot is from the
obstacle avoidance task. In this case there are four persistent features.

The set of persistent clusters with a lifetime larger than Kmin are deemed to be active
objects in the world and are transformed to world coordinates and added as features, f :

f j = T w
l µ

j (2)

where the transformation T w
l transforms the centroid of the cluster in the laser frame to a

point in the global frame. This feature is rejected if it is outside of course boundaries.
In order to compute T w

l we directly used the output from our GPS sensor, which pro-
vided a stable pose estimate in practice. Nevertheless, a more reliable approach would be
to implement a full SLAM system, or use some other form of marine vehicle navigation
[11].



4 Anderson et al.

Fig. 3 Object detection from point cloud Top: Point cloud from 3D laser with buoys identified. Bottom:
Corresponding image from camera used for buoy color detection.

2.2 Buoy Detection

Each reception of an object detection from the laser triggers an attempt to classify the
color of the object. The feature location is back-projected into the camera frame to try and
identify color [5]: [
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respectively, and K is the camera calibration matrix. A sub-windowed image around around
the landmark pixel location is created, which is then subjected to a series of thresholding
operations in the hue-saturation-value (HSV) color space. Using the HSV colorspace is
beneficial for color detection in images because it is less sensitive to lighting conditions as
the majority of the color information should be contained within the hue channel and the
aggressive sub-windowing was found to be critical to avoid false detections.

Fig. 4 shows a sub-windowed image from one of the test trials as well as the output of
the red filter showing correct color identification.

2.3 Feature association

Fig. 4 Left: Sub-windowed image
from camera. Right: Output from
“red” color segmentation filter.

We use a simple nearest neighbor [1] approach to asso-
ciate features. If an incoming feature is at location l j then
the feature is associated to feature i if two conditions are
met:

li = argmin
l∈L

||l− l j||

dmin < ||l− l j||
(4)

We refer to these associated features as “tracked features” Lm = {l1..|m|,c1..|m|} where |m| is
the number of times that tracked feature Lm has been detected and the c values corresponds
to the color decisions made for each detection. The final set of M distinct tracked features
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L = {Lm}m=1..M are used by the control and autonomy system (Sec. 5) to complete the
specific tasks.

3 Pattern Identification
Pattern recognition was a required capability for two tasks. The first was Task 3 where a
spatial pattern, either a cross, circle, or triangle, was used to identify the correct bay for
docking. The second was Task 4 which required the identification of a temporal pattern.
In both cases, aggressive sub-windowing in the image was performed to guide the visual
search and decrease false positives while maintaining low computation.

3.1 Placard Detection for Docking

The key objectives for our placard detector were:

1. Robustness to degradation caused by motion, scale and perspective transformation from
different viewing positions, warp and occlusion caused by wind, and variants of color
from light condition, and

2. Speed and accuracy to support real-time decision-making.

We tackle this problem by using two-step pipeline. First, a detection phase identifies
candidate regions and we subsequently process each region in a decoding stage to see if it
matches any of the three placards.

Detection

To minimize unnecessary computation and to avoid looking for placards in nearly empty
image regions, in the first stage we extract candidate regions using Extremal Regions
(ERs) [9]. An ER is a region R whose outer boundary pixels ∂R have strictly higher values
in the intensity channel C than the region R itself, i.e., ∀p ∈ R,q ∈ ∂R : C(p)< θ < C(q),
where θ is the threshold of the ER. Let a grayscale input frame I be a mapping I : D ⊂
R→ {0, . . . ,255}. Rb and Rw donate the sets of detected ERs from I and inverted I, re-
spectively. We extracted features F for each region in Rb and Rw, and then filter according
to size, aspect ratio, and number of holes. We observed that a placard is designed as a black
symbol on a white board. The set of candidate regions Rc ⊂Rb is formed when a region
rb in Rb satisfies rb ∩ rw = rb, as well as certain conditions on relative size, location, and
intensity of rb and rw, where rw ∈Rw. Imposing such constraints drastically reduced false
positives, and typically only the black symbols on placards are detected.

Decoding

In the decoding stage, we desired very high precision at the expense of recall since occa-
sional missed detections are tolerable but false positives will cause significant problems.
During the competition the system needed to be able to adapt quickly and there were only
limited training examples of placards available. We set up one template for each of circle,
triangle, and cross, and match a candidate region rc ∈Rc to one of the placards, when the
number of good matching keypoints is higher than a threshold. SIFT [6] and FAST [12]
keypoints and SIFT descriptors are appealing choices to distinguish each placard. For ex-
ample, the cross contains many SIFT keypoints, typically corners surrounded by gradients,
and triangle contains FAST keypoints (typically “sharp” corners), where a a pixel p has
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Fig. 5 Placard feature detection The three correctly detected placards are circled in blue, red, and green.

Fig. 6 Light tower sequence detection.

contiguous n pixels in the circle around p brighter or darker. Fig. 5 demonstrates the de-
coded candidate regions shown with blue, red, and green circles. The computation runs at
two frames per second for an image resolution of 1280 × 720 pixels.

3.2 Light Buoy Sequence Detection

Algorithm 2 Light Buoy Sequence Detection
Input: Video stream
Output: Light sequence Φ

1: Φ ← /0
2: Wait until first detection is made
3: Wait until no detection is found for 2 seconds
4: while |Φ |< 3 do
5: C← color detected in image
6: if C 6= last entry in Φ then
7: Φ ←Φ

⋃
C

8: end if
9: if No Detection then

10: Return to Step 3
11: end if
12: end while

The light buoy color sequence consists
of an LED panel mounted on top of a buoy
that emits a sequence of three colors (each
for half a second), followed by a two sec-
ond break. Detection of color on the LED
is done with a similar process as for the
buoy color detection (Sec. 2.2) except that
there is an added temporal component re-
quired to detect the sequence. An overview
of the approach is given in Algorithm 2.
An example of a sequence being detected
is shown in Fig. 6.

This system requires the light buoy to
be within the field of view of the camera
for minimum of four seconds (the end a sequence and then one full sequence). If no de-
tections are being made the segmentation thresholds are adapted automatically to be more
admissive. Similarly, if the pause in the sequence is never being found (caused by false
detections) then the thresholds are adaptively made more restrictive.
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4 Acoustic Sensing

The process of localizing the pinger in Task 2 had two main components: First, relative
bearing measurements are obtained from processing the signals received at the hydrophone.
Second, subsequent bearing measurements are combined with a particle filter to yield a final
estimate of the pinger location.

4.1 Relative Bearing Measurements

Fig. 7 “T”-shaped Acoustic Array

The acoustic system consisted of a 4-element hy-
drophone phased array, a custom amplification and
filtering board (AFB), a data acquisition board
(DAB), and a computer. The phased array was as-
sembled into a ‘T’ shape (see Fig. 7) with uniform
element spacing d = 1.9cm. This formed two sub-
arrays, one horizontal for use in bearing estima-
tion and one vertical for use in elevation estimation.
The signal from each hydrophone channel passed
through a 10kHz Sallen-key high-pass filter, a 2x
amplifier, and then a 50kHz Sallen-key low-pass fil-
ter on the AFB [13]. The resulting signal was converted to digital by the DAB and used to
determine pinger location from four channels of hydrophone data. First, matched filtering
on the first acoustic channel was used to identify if a ping of the correct frequency oc-
curred [10]. Conventional (delay-and-sum) beamforming was applied to the array data, and
the maximum value in the beampattern was used to determine bearing to the pinger [14].
Let z represent the direction along the array. The discrete array has elements at locations
z = [−d,0,d]. The goal of beamforming is to find the angle of incidence, θ0, of the signal
from a pinger with frequency f0. This gives a wavenumber k0 = 2π f0/c. The z-component
of the wavenumber can be expressed in terms of ‘look’ direction θ :

kz = k0cosθ . (5)

This component of the wavenumber is used to calculate the delay vector v:

v(θ) = e− jzkz . (6)

Delay-and-sum beamforming [14] is then applied by first multiplying the snapshot time
series, x = [x1,x2,x3], with the delay vector and then taking the Fourier transform:

Y = F (xv′). (7)

The beampattern function at look angle θ is the value of Y at frequency f0, B(θ) =
Y( f0). The bearing to the pinger of frequency f0 is the look angle that results in the maxi-
mum for the beampattern:

θ0 = argmax
θ

‖B(θ)‖ (8)
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Fig. 8 Particle Filter Localization Left: The particles are initialized after the first bearing line is received.
Middle: As more bearings are received, the particles begin to localize on the pinger location. Right: After
more information is received the particles converge on a single point.

A similar process was used to determine the pinger elevation angle: conventional beam-
forming was applied to the vertical array (elements 1 and 3) and the beamforming angle
with the maximum response identified as the elevation angle of the pinger.

4.2 Particle Filter Pinger Localization

The estimated elevation and bearing angles reported by the hydrophone system were used
by a particle filter [8] to estimate the possible pinger location. An overview of the method is
illustrated in Fig. 8. When the first relative bearing measurement is received, the particles
are initialized uniformly along the portion of the bearing line that falls within the task
boundary.

When the second and subsequent bearing measurements are received, the particles are
each given a weight based on their proximity to the new bearing line based on the following
equation:

wt
i = wt−1

i
p(rt

i |ζ t
i )p(ζ t

i |ζ
t−1
i )

q(ζ t
i |ζ 0:t

i ,rt
i)

(9)

where ζ t
i is the xy-positon of particle i at time t, and rt

i is the orthogonal distance from the
particle position, ζ t

i , to the line anchored at the current vehicle position, xt ,yt with slope
corresponding to the bearing measurement, θ0 calculated in (8). If we set the transition
prior p(ζ t

i |ζ
t−1
i ) equal to the importance function q(ζ t

i |ζ 0:t
i ,rt) [8], and assume a normal

distribution for p(rt
i |ζ t

i ), we can simplify (9) to:

wt
i = wt−1

i
1

σ
√

2π
e
−
(rt

i)
2

2σ2 (10)

Finally, we use sequential importance resampling to avoid particle depletion. This in-
volves a check to determine if the effective number of particles Ne f f has fallen below a
threshold Nthreshold . The effective number of particles is:
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...

Fig. 9 Control system used in autonomy mode. Behaviors in the IvP Helm generate objective functions
which are weighed at runtime to determine a best choice desired heading and speed. These values are
tracked by an inner loop PID controller.

Ne f f =
1

∑
N
i=1(w

2
i )

(11)

where N is the total number of particles. The best guess for the pinger location at any given
time is computed is the average location of the particles.

5 Autonomy and Control

The operation of the vehicle is broadly characterized into two modes: (1) Autonomy, which
is used for moving the boat around and avoiding obstacles, and (2) Observation, which is
used for keeping the vehicle’s sensors pointed in a specific direction.

5.1 Autonomy

In autonomy mode, the vehicle has to balance different objectives, such as transiting to
a goal point while avoiding obstacles. This balance is achieved using multi-objective op-
timization with interval programming (IvP), [3], [4], where each goal is represented by
a piecewise linearly-defined objective function for evaluation in conjunction with all other
active objective functions. The optimization engine on-board the ASV considers and solves
for the resultant maneuver (ordered course, speed) using

−→
x∗ = argmax

−→x

k

∑
i=1

(wi · fi(
−→x )) (12)

where each fi(x1, ...,xn) is an objective function for the ith of k active goal, and the weights,
wi are used to prioritize the different objectives.
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An overview of the control methodology in the autonomy mode is shown in Fig. 9.
The outer loop desired heading and speed values are generated by the IvP Helm which
operates within the mission oriented operating suite (MOOS) environment [2]. In our case,
each feature outputted by the feature tracker (described in Sec. 2) is treated as an obstacle
and spawns a new obstacle avoidance behavior. These avoidance behaviors (“Avoid 1” to
“Avoid N” in Fig. 9) are then used to prioritize actions that move the vehicle away from
obstacles. These are weighed with a waypoint behavior that is used to steer the vehicle
towards the desired goal.

5.1.1 The Obstacle Manager

The association of features is performed by the feature tracker that processes the clustered
output from the laser. Due to noise in the system, as well as the fact that features (such as
buoys) may be actually moving on the water surface, the reported locations of features can
be variable. To be conservative, we track the history of reported feature locations and avoid
all of them.

Fig. 10 Conversion of Feature Loca-
tions to Convex Hull: As new points (fea-
tures) arrive, the convex hull is incremen-
tally updated.

This is done in the obstacle manager by tracking
all reported locations for a given feature, and then
defining a convex hull for each feature as shown in
Fig. 10.

The obstacle manager reports the convex hulls as
polygons to the IvP Helm. The IvP Helm is config-
ured with an obstacle avoidance behavior template
that will spawn a new behavior with each new ob-
stacle ID that is received and subsequent updates
from the obstacle manager may change the shape
of the polygon representing the obstacle. In Fig. 11,
the vehicle is transiting through an obstacle field in a
qualification run where four of the obstacles are “ac-
tive” (generating objective functions) and they are shown in the figure as filled in polygons.
An additional buffer is added around each obstacle but if necessary this buffer is shrunk
for the vehicle to be able to fit through tight spaces. The collective objective function (Fig.
11-right) is the sum of the waypoint behavior and the four active obstacle avoidance behav-
iors. In the figure, colors closer to red are higher utility and closer to blue are worse. The
angles on the circle denote desired headings (in the same reference frame as the picture on
the right) and distance from the center of the circle denotes desired speed. The pink dot in
the figure is the outputted desired heading and speed.

5.2 Observation

For observations required in Tasks 2, 3, and 4, we developed a control mode that bypasses
the IvP Helm and directly maintains a certain observation point within the field of view of
the sensor. In this mode, the desired heading is generated by comparing the actual robot
pose (observed through GPS and compass sensors) and the heading required to maintain
the observation point in the field of view (Fig. 12). This value is computed in the “Pose
Keeping” block (Fig. 13).
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Fig. 11 Left: The ASV nav-
igating through a field of
obstacles. The filled polygons
are currently active and gen-
erating objecting functions.
Right: A color plot showing
the sum of all objective func-
tions where redder colors are
higher utility and bluer colors
are lower utility. Vehicle not
to scale.

Fig. 12 Control system for
maintaining observation of a
fixed point. The pose keeping
block is used to generate the
reference heading and error is
minimized through feedback
PID control loop.

6 Hardware Setup

Fig. 13 Pose Keeping: A vehicle with differ-
ential thrust applies opposing thrust of equiva-
lent magnitude to turn a vehicle in place until
it achieves a desired hold heading, with a
given hold tolerance.

The platform base of the vehicle provided to the
team was the WAM-V [7], which is a 13-foot,
double-pontooned hull with a dynamic suspen-
sion system that supports a platform for the
vehicle’s sensors and electronic components
above. The custom-designed power and propul-
sion system consisted of two Torqeedo Power
26-104 batteries, which rested at the back of the
pontoons and powered two Riptide Transom 80
saltwater transom mount trolling motors. The
vehicle was steered using a differential drive
paradigm through a Roboteq VDC2450 motor controller. The batteries had enough ca-
pacity to last all day, and the motors provided enough thrust to be practical and proved easy
for folding and stowage.

The vehicle had four computers on board: two Portwell NANO-6060’s and two Intel
NUC kits, which were configured to be used interchangeably. These computers provided
the processing power to process the sensor data from the laser, run the autonomy system,
and also communicate with a shoreside computer through a WiFi antenna. The system re-
ceived location and heading data from a Vector V102 GPS system, and the acoustic data
was processed on a PC-104 stack, both of which talked directly to the four main comput-
ers. This system was powered by a lead-acid battery, separate from the propulsion power
system.

An emergency stop system was designed to sit between the vehicle’s computers and the
motor controller.
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Fig. 14 RobotX hardware system layout and connections.

The emergency stop system can
communicate directly to an op-
erator control unit (OCU) box,
which allowed a human operator
to override the autonomy system
at any point in time with manual
control. Arduino microcontrollers
using Xbee radios communicat-
ing over a 2.4GHz signal were
used. In addition, another layer of
safety was designed by tying a
pair of on-board emergency stop
buttons directly into the motor
controller. The whole emergency
stop system had its own sepa-
rate power source, for an added
level of safety. An overview of all
of the hardware components and
connections is shown in Fig. 14.

7 Results and Discussion
A snapshot of the vehicle performing each task is shown in the left column of Fig. 152.
On the right column is a task-specific snapshot built from the data collected. For Task 1
(top), the figure shows the navigation through the buoys. We were able to reliably achieve
this task throughout. For Task 2 (second row) we show the output of the particle filter as
well as the last bearing generated. Row three shows the docking task. Our feature detection
based on the method in Sec. 3 was reliable. The fourth row shows the light buoy sequence
detection. This was perhaps the most challenging task since it involved color detection in
variable light conditions. Additionally, the colorful background enhanced the probability of
false detection. The final task was obstacle avoidance. The feature detection and tracking
system was reliable, but the overall system had some latency issues as described below.

7.1 What Went Wrong - Lessons Learned

We were able to successfully complete all the tasks successfully in qualifications. How-
ever, a few mishaps prevented us from completing each task on the final run. Due to time
constraints, we reduced the amount of time that we would wait for the acoustic system to
process data, and therefore only received two bearing measurements. This gave us partial
points for identifying the color of the closest buoy but not the exact pinger location. On the
docking task, we were able to correctly identify the “CIRCLE” placard which was desig-
nated at the start of the run, but our right pontoon caught the edge of the dock. This was
likely due to incorrect extrinsic calibration of our camera system. At the last second before
the final run, we decided to add functionality such that if the light buoy sequence was not

2 A video of our qualification and final has been made available (http://robotx.mit.edu/fsr_
video).
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Fig. 15 Left column: snapshots of the WAM-V robot performing each of the five tasks (Task 1 at top to
Task 5 at bottom). Right column: Row one, two and five snapshots from the pMarineViewer [2]. Row three
and four show processed snapshots from the camera onboard.

determined before a timeout was reached, then we would move on to the final task and at
least take a guess.

Table 1 RobotX Final Rankings

1 MIT/Olin (USA)
2 KAIST (South Korea)
3 Queensland University of Technology (Australia)
4 Embry-Riddle Aeronautical University (USA)
5 National University of Singapore (Singapore)
6 Osaka University (Japan)

Unfortunately, we inputted the incorrect
task number and this forced a guess to
be reported when we entered Task 4 (the
light buoy observation task), so as a result
a guess was reported after docking even
though post-processing of the camera data
determined that we would have reported a
correct sequence. This last-minute change deviated from our typically methodical approach
to simulating and testing all code changes prior to deployment and really reinforced that
if there is insufficient time to test a modification before deployment then it simply should
not be made. We also struck a buoy in the obstacle field. It was later determined that this
was due to a delay in our obstacle managing system. Although the buoy had been correctly
detected, the behavior necessary to avoid it was not spawned in time to avoid collision.
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Despite these errors, we accumulated the highest point total in the final round. The final
rankings are shown in Table 1.

8 Conclusion
This paper outlines the MIT/Olin team’s approach and performance in the inaugural AUVSI
RobotX competition. In the competition, each of the fifteen teams were provided with an
identical marine vehicle frame and were responsible for building the propulsion, electronic,
sensing, and autonomy systems required to complete a series of five tasks. Ultimately, the
MIT/Olin team narrowly won first place in a very competitive field. The team’s codebase
and data are publicly available.
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