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Abstract Visual loop closure detection is an important problem in visual
robot navigation. Successful solutions to visual loop closure detection are
based on image matching between the current view and the map images. In
order to obtain a solution that is scalable to large environments involving
thousands or millions of images, the efficiency of a loop closure detection
algorithm is critical. Recently people have proposed to apply l1-minimization
methods to visual loop closure detection in which the problem is cast as
one of obtaining a sparse representation of the current view in terms of map
images. The proposed solution, however, is insufficient with a time complexity
worse than linear search. In this paper, we present a solution that overcomes
the inefficiency by employing dynamic algorithms in l1-minimization. Our
solution exploits the sequential nature of the loop closure detection problem.
As a result, our proposed algorithm is able to obtain a performance that
is an order of magnitude more efficient than the existing l1-minimization
based solution. We evaluate our algorithm on publicly available visual SLAM
datasets to establish its accuracy and efficiency.

1 Introduction

Autonomous mobile robots are beneficial to work in hazardous environments,
or places out of range of human operators over long periods of time, such as
exploration and rescue. In many environments robots have no prior knowl-
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edge about their surroundings. Therefore, it is essential for a robot to be
able to map an unknown environment itself in order to perform its tasks. Si-
multaneous Localization And Mapping (SLAM) has been a focus of robotics
research and, among the many issues of concern, is the detection of loop
closures, i.e., revisits to map locations.

In order to be able to handle a large environment, a loop closure detection
algorithm must be efficient. The dominant approach in SLAM literature to
meet this requirement is based on visual bag-of-words (BoW) that achieves
efficiency through indexing. Visual BoW however often requires offline con-
struction of a visual vocabulary, which may not be representative of the
environment that a robot will visit online, and the step of keypoint detection
and vector quantization can be computationally costly.

An alternative to visual BoW for loop closure detection is compact whole
image descriptors that avoid the step of keypoint detection and vector quanti-
zation [13]. In this case, loop closure detection is solved as a nearest neighbor
search considering the descriptor of the current view as the search key. Re-
cently, an interesting solution based on l1-minimization has been proposed
that solves this nearest neighbor search problem through sparse reconstruc-
tion. The proposed solution, although elegant, is less efficient than linear
search to find the nearest neighbor, and offers little incentive for people to
adopt.

In this paper, we improves the solution based on l1-minimization by ex-
ploiting the sequential nature of the loop closure detection problem, i.e., suc-
cessive robot views look similar so that l1-minimization does not need to be
solved from scratch. We make use of recent algorithms in dynamic algorithms
for l1-minimization to achieve a solution that is an order of magnitude more
efficient than the static l1-minimization, without sacrificing accuracy. Most
importantly, our solution is more efficient than linear searsh and is there-
fore a competitive candidate in tackling the problem of visual loop closure
detection with whole-image descriptors.

The remainder of this paper is organized as follows. In Section 2, we discuss
related works that address the loop closure detection problem. In Section 3,
we present a brief overview of sparse representation using l1-minimization
to solve the loop closure problem. Also dynamic update of the optimization
problem to avoid solving l1-minimization for each input image is described.
In Section 4, we explain how the proposed dynamic sparse representation can
be utilized in visual robot navigation and in Section 5 we present the exper-
imental results on standard datasets. Finally, we summarize our approach
and offer concluding remarks in Section 6.
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2 Related Works

Loop closure detection is a fundamental problem in SLAM and is defined as
the detection of the event when a robot returns to a previously visited place.
This information is necessary, since it allows the robot to reduce and bound
the errors and uncertainty in the estimated pose and environment map. Loop
closure detection has been extensively studied and many solutions have been
proposed over the years for robot navigation. In this work we focus only on
image-based methods.

One of the popular methods to address this problem is visual Bag-of-Words
(BoW). The BoW approach has achieved considerable success in content-
based image retrieval as well as in object recognition and image classifica-
tion [5]. The solution uses an offline process in which features in training
images are extracted and their descriptors are clustered. The cluster centres
then serve as visual words and the collection of visual words form a visual
dictionary or vocabulary [17]. Given a query image, its visual features are
vector quantized through a nearest-neighbor (NN) algorithm to match with
the visual words in the dictionary, and an image descriptor is built in terms of
the histogram of the visual words appearing in the image. Candidate images
that are similar to a query image can be retrieved efficiently using an inverted
index. Because the visual dictionary is built offline, the online cost includes
feature extraction, nearest neighbor search, and indexing of the query image.
Although BoW has been shown to be an efficient method for producing loop
closure candidates, it suffers two key weaknesses. First, an offline step is often
needed to build a visual vocabulary from training images, but the training
images may not represent the future views of the robot appropriately. Sec-
ondly, the step of vector quantization, which converts visual features into
visual words required by indexing, can be inefficient with a linear search
and may cause perceptual aliasing [14], i.e., high similarity between different
locations.

Nister et al. [15] proposed “vocabulary tree” as a way of speeding up
nearest neighbor search in a large database and [3] used this method for
loop closure detection in visual SLAM. Vocabulary tree was introduced as
a hierarchical approach to Bag of Words although a tree structure does not
guarantee the exact nearest neighbor. Cummins et al. [6] proposed FAB-
MAP as a probabilistic appearance based approach using BoW and showed
its performance on large scale environment. Although Galvez-Lopez et al. [11]
advance the method by introducing a Binary BoW (BBoW) to speed up the
method, it still needs an offline process to build a dictionary.

As a competing approach to visual BoW, compact whole-image descrip-
tors such as Gist [16] have been recently employed in performing visual loop
closure detection [13]. Rather than describing an image in terms of its key-
points, a whole-image descriptor may simply use a down-sampled version of
an image, its gradient information, or its response to a filter bank, to describe
the image. Whole image descriptors can avoid the computational complexity
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of feature detection and vector quantization in BoW, but introduces the need
to perform nearest neighbor search in matching the descriptor of the current
view and those of the map locations. In addition, the quality of detected loop
closures can be affected as the result of simple representations. These issues
have been alleviated with some success with the help of the Monte Carlo
technique [13].

Most recently, an interesting solution has been presented to cast the loop
closure detection problem as one of sparse reconstruction [12]. The solu-
tion uses l1-minimization algorithms and is accurate in matching the current
view with the map images. In their work, the current view of the robot is
matched with a small number of the all observations from the map images
through convex l1-minimization which provides a sparse solution. By using
a fast convex optimization technique, they showed their method to be fast
enough for a map with 8,500 images. However, since their method needs to
solve l1-minimization problem from scratch for each newly captured image,
increasing the number of images as the map size grows leads to a computa-
tional complexity that can be infeasible in large scale environments. In fact,
their method has a time complexity that is worse than linear search, as we
will show in the experimental result section, and this gives little incentive for
one to choose this method for solving the loop closure detection problem.

To address the computational complexity issue of solving l1-minimization
from scratch, in this paper we introduce a highly efficient approach for loop
closure detection by first solving a static l1-minimization problem once and
then updating the convex l1-minimization solution dynamically to avoid solv-
ing a new optimization problem for each newly captured image. We exploit
the fact that in visual SLAM the current robot view is similar to the recent
previous views. We use this property of the loop closure detection prob-
lem to formulate our solution as the dynamic update of the solution to l1-
minimization in the previous step.

3 Sparse Solution for Loop-Closure Detection

Sparse Representation (SR) is a signal processing technique for reconstruct-
ing a signal by finding solutions to an underdetermined linear system and it is
solved through convex optimization algorithms. SR has been extensively used
for face recognition [18], denoising [9], etc. We use this framework to find the
closest image in a robot map to a new observation for loop closure detection
in SLAM. In this section, we first present a brief overview of sparse represen-
tation and l1-minimization. Then we will describe the dynamic update of the
convex minimization problem to approximate the solution without solving a
complete new minimization.
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3.1 Loop closure detection via convex l1-minimization

Image matching is essential for loop closure detection in visual SLAM. One
recent successful image matching method, especially in large datasets, is the
SR method [12]. Let n be the number of images in the robot map, and m be
the dimension of the descriptor of each image in the map. Further, assume y to
be the current view of the robot. The map images form a matrix A ∈ Rm×n,
and the linear representation of y can be rewritten in terms of all map images:

y = Ax0 , y ∈ Rm (1)

where x0 represents the contributions of the map images to the reconstruction
or representation of the current view. In SR the system is underdetermined
with m < n. Therefore, recovering x0 constitutes a non-trivial inverse prob-
lem. A classic solution to this problem is linear least squares, which finds the
minimum l2-norm solution to this system.

x̂2 = argmin‖x‖2 subject to Ax = y (2)

Equation (2) can be easily solved, but the solution x̂2 is dense (i.e., all
its elements are non-zero in general) as is shown in [18] and is therefore not
useful to retrieve y. Due to the fact that the query image can be represented
using the map images at locations similar to the current robot location - if
there is loop closure - the representation is naturally sparse, i.e., all but a
small number of the elements of x are 0. The sparsest solution to y = Ax is
obtained by the following optimization problem:

x̂0 = argmin‖x‖0 subject to Ax = y (3)

The problem of finding the sparsest solution of an under-determined system
of linear equations is NP-hard and difficult even to approximate [18, 1]. The
theory of sparse representation [8] shows that if the solution x̂0 is sparse
enough, the solution of the l0-minimization is equal to the solution of the l1-
minimization, and x0 can be retrieved by computing the minimum l1-norm:

x∗ = argmin‖x‖1 subject to Ax = y (4)

In real applications such as image matching in visual SLAM, a true loop
closing image y can only be represented by map images approximately with
slightly different illuminations, translations, and rotations. In such cases
‖Ax − y‖2 ≤ ε, where ε > 0. So, to find a sparse solution x∗, one could
use conventional l1-regularized least squares regression as follows:

x∗ = argmin
x

1

2
‖Ax− y‖22 + λ‖x‖1 (5)

where l1-regularization enforces sparsity on x∗; unfortunately, the complexity
of solving (5) grows polynomially with m and n.
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3.1.1 Solving l1-minimization

In practice, for loop closure detection in visual SLAM, we have to solve (5)
online and accurately. One of the fastest l1-minimization methods is homotopy
algorithm associated with the basis pursuit denoising (BPDN) [4] approach,
which is applied by Latif et. al. [12] and described below for the completeness
of presentation.

A solution x∗ to (5) should follow the condition [10, 2]:

‖AT (Ax∗ − y)‖∞ ≤ λ (6)

In the above equation, we distinguish between the nonzero components and
the zero components of x∗. We denote x̄∗ the reduced dimensional vector built
upon the nonzero components of x∗. Similarly, AΓ denotes the associated
columns in A (Γ is a set with the indexes of nonzero elements in x∗). So, the
optimality conditions for any given value of λ are as follows [10]:

ATΓ (Ax∗ − y) = −λz (7)

‖ATΓ c(Ax∗ − y)‖∞ < λ (8)

where AΓ is a m×|Γ | matrix from the columns of A indexed by Γ and vector
z is signs of x̄∗. AΓ c denotes all columns of A that are not in AΓ . From the
support Γ and z, the solution x∗ can be calculated as follows [10, 2]:

x∗ =

{
(ATΓAΓ )−1(ATΓ y − λz) on Γ

0, otherwise
(9)

The algorithm proceeds by computing (7), (8), and (9) iteratively, until
AT (Ax∗ − y) < c (a small constant such as 10−6) and the final x∗ represents
the solution for (5).

3.2 Dynamic Update for Homotopy

The static homotopy solution described in the previous section has a com-
plexity that is polynomial in n and m, and can therefore be too slow for a
large scale map. However, in loop closure detection, we expect the current
image captured by a robot to be similar to the image that robot captured in
the previous time instance. So, we can update the l1-minimizer for the last
image, described in Section 3.1.1, to obtain the solution to the current image
without solving the optimization problem from scratch. Asif and Romberg [2]
explained the problem of estimating a time varying sparse signal from a series
of linear measurement vectors to update the standard BPDN homotopy dy-
namically. They assumed that the signal changes only slightly between mea-
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surements, so that the reconstructions will be closely related, an assumption
that holds true in visual SLAM for finding the best match between the cur-
rent image and the map images. This dynamic method enables us to arrive
at a solution that is highly efficient and capable of handling large-scale robot
environments. In the rest of this section, we apply the dynamic algorithm [2]
to loop closure detection in visual SLAM.

Assume that we have solved the BPDN problem (5) for a given value of
λ. Now, for a new image, we express it as a m-dimensional feature vector y̆,
and the problem we have to solve for the new image approximately is:

argmin
x

1

2
‖Ax− y̆‖22 + λ‖x‖1 (10)

with the same value of λ in (5). In classical approaches (10) is solved for
each image without benefiting from the just-completed solution. Our goal is
using the information from the solution of (5) to quickly compute the solution
for (10). Thus, we use the homotopy formulation in [2]:

argmin
x

1− ε
2
‖Ax− y‖22 +

ε

2
‖Ax− y̆‖22 + λ‖x‖1 (11)

where ε is the homotopy parameter. By increasing ε from 0 to 1, (11) moves
from the solution of (5) to the solution of (10). By adapting the optimally
conditions of (7) and (8) for (11), we have:

ATΓ (Ax∗ − (1− ε)y − εy̆) = −λz (12)

‖ATΓ c(Ax∗ − (1− ε)y − εy̆)‖∞ < λ (13)

where Γ is the support of solution x∗ and z is its sign sequence on Γ .
From (12) the solution x∗ for (11) follows a piecewise linear path as ε varies.
The critical point in this path occurs when an element is either added or
removed from the solution x∗. Parameter ε increases incrementally from 0 to
1 and [2] proved that the direction of the solution x∗ moves by:

∂x =

{
(ATΓAΓ )−1ATΓ (y̆ − y), on Γ

0, otherwise
(14)

With the moving direction given by (14), we are able to find the step-size
θ [2], which leads us to the next critical value of ε. Afterwards, the solutions
at that point are as follows:

ε←− ε+ θ, x∗ ←− x∗ + θ∂x (15)

This procedure is repeated from (12) to (15) until ε = 1 and the final x∗

represents the solution for (11), which means the best matched images could
be found by this dynamic updating method without solving (11) indepen-
dently.
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4 Implementation Details and Discussion

We have formulated loop closure detection problem with the dynamic update
of BPDN homotopy algorithm in Section 3.2. Here, we explain how this novel
formulation can be utilized in visual loop closure detection.

4.1 Initialization

To initialize our solution to loop closure detection and construct our Amatrix,
we use the first n images or keyframes captured by the robot where n is a
small number (e.g., 20). In addition, as is customary, we exclude the last l
images seen by the robot from consideration in matching the current view
with the map images in order to avoid triggering false loop closure detection
due to the similarity between successive images. l is another small number
where l < n (e.g., 15).

After constructing A, for the next query image we use standard homotopy
to obtain the initial solution x∗ just once, and this solution is updated via
dynamic method for all the subsequent images while the robot moves and
captures additional keyframes.

4.2 Selection of the Top Candidate from Solution x∗

The solution x∗, obtained by either homotopy or its dynamic update, is nat-
urally sparse and represents candidate images from the robot map to best
match with the current view. To find a unique image and potentially close a
loop, we select the greatest contribution αi from the solution x∗ = [α1, ..., αn].
The index i, corresponds to the column of the matched image in the map.
To improve the chance of true positive detection and reduce false alarm, we
use the heuristic that if 2-norm between the matched image and the cur-
rent image is less than a predefined threshold τ , a loop closure is detected
(‖A:,i − y̆‖2 < τ). τ can be chosen empirically and, as will be shown in our
experiments, the precision of the detected loop closures can reach 100%.

We should add that the proposed method accommodates the growth of the
robot map, when a novel image is detected, by adding a column to the end
of the matrix A, i.e. Ak = [Ak−1, fk] so that the map grows incrementally
similar to [12]. fk denotes the descriptor of kth image being added to the
map. The main steps of our method are summarized in Algorithm 1.
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Algorithm 1 Closing Loops via the Proposed Method
1: Initialization:
2: Preparing Matrix A (see Section 4.1) , λ = 0.5,
3: For the first query image i
4: Obtain x∗ with Solving (5) via standard homotopy
5: Closing loops (see Section 4.2)
6: Update matrix A (see Section 4.2)
7: For all query images i to n
8: Update x∗ via dynamic method (see Section 3.2)
9: Closing loops (see Section 4.2)

10: Update matrix A (see Section 4.2)

4.3 Discussion

In terms of computational cost, although homotopy is one of the popular
and fastest solvers for SR, the computational complexity of homotopy is still
O(dm2+dmn) to recover a d-sparse signal in d steps. Obviously, this complex-
ity grows polynomially with m and it is expensive for large-scale datasets or
maps. In contrast, in the proposed method, for each query image, the main
computational cost comes from solving a |Γ | × |Γ | system of equations to
compute the direction in (14). |Γ | is equal to the number of nonzero elements
of the sparse solution x∗ which means its size is small enough. Therefore, the
computational cost of the proposed method is significantly lower than the
static homotopy method.

5 Experimental Results

In this section, we perform a set of experiments to demonstrate and validate
the capability of the dynamic updating of l1-minimization method to per-
form loop closure detection in visual SLAM. In particular, we evaluate the
computational cost and the accuracy of the proposed method and compare
it with the standard l1-minimization in [12] and a nearest neighbor (NN)
method. Since the proposed method is appropriate to detect loop closure in
large scale datasets, we compare our method with FAB-MAP as well. We use
three datasets: New College, City Centre, and a Google Street View dataset,
with the following details.

• New College: This dataset consists of 2146 images along a 2.2km trajectory.
Each image has originally a resolution of 640 × 480 and is down sampled
to 320 × 240. The dataset provides stereo images from the left and right
of the robot, and we use both images from each location as query image
with a combined resolution of 640× 240 so that n = 1073.
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Fig. 1: Execution time comparison (in
seconds) on “City Centre” dataset
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Fig. 2: Execution time comparison (in
seconds) on “New College” dataset

• City Centre: This dataset consists of 2474 images and similar to New
College dataset provides stereo images. Each image has a resolution of
640 × 480 and is down sampled to 320 × 240. Again, we use both images
from each location as query image with a combined resolution of 640×240
so that n = 1237.

• Google Street View: This dataset consists of about 50000 images captured
in downtown Pittsburg by Google. This dataset has omni-directional im-
ages by four cameras at each location, and we reduce the resolution of the
obtained panoramic view to 640 × 240. The number of locations in this
dataset is around n = 12, 500.

To describe an image, we use HOG [7] with m = 576 dimensions and a
constant weighting parameter λ = 0.5. In this section, we focus on the capa-
bility of our dynamic model in comparison with the static homotopy and NN
method. In all methods we use the same algorithm for closing loops.Also, to
be consistent with [12] we just pick the highest α as a top candidate (the first
method in Section 4.2).

5.1 Execution Time

In the first set of experiments, we compare the computational cost of the pro-
posed method with the standard l1-minimization and the NN method, when
the size of the dataset is increased incrementally. We run the experiments in
Matlab 2011b on a desktop computer with Core-i7 CPU of 3.40GHz and 16
GB RAM.

Fig. 1 and Fig. 2 show the execution time for finding the best candidates on
“City Centre” and “New College” datasets respectively, when the images are
added to the map incrementally. These figures illustrate the proposed method
is faster and more stable (smaller standard deviation) than the standard L1-
minimizer, by a factor of four on average. Also, our dynamic model is around
two times faster than the nearest neighbor method on both datasets.
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Fig. 3: Execution time comparison (in
seconds) on “Google Street View”

dataset with using of 576 dimensional
HOG descriptor for images
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Fig. 4: Execution time comparison (in
seconds) on “Google Street View”

dataset with using of 81 dimensional
HOG descriptor for images

To show the capability of the proposed method on larger datasets, we
compare the computational time of the dynamic method with the standard
l1-minimizer and NN method to find the best match on “Google Street View”
dataset in Fig. 3. This experiment confirms that the proposed method is much
faster than both the standard homotopy and NN methods when the map
is large. Also, Fig. 3 demonstrates the dynamic update method has much
smaller standard deviation than the standard homotopy method to obtain
the solution as the map expands with additional images. Furthermore, com-
parison of Fig. 3 and Fig. 4 shows the scalability of our model in comparison
with two other methods in terms of feature vector dimension. By increas-
ing m as the dimension of feature vector, computation time of the two other
competing methods increases at a faster rate than our model. The qualitative
result on the Google Street View dataset is also shown in Fig. 5 where the
blue lines represent the robot map and the red dots represent detected loop
closures by the proposed method. The ground truth of loop closures (in green
dots) can be found in Fig. 6.
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Fig. 5: qualitative result of the
proposed method on “Google Street
View” dataset to find loop closures

Fig. 6: Graphical ground truth for
“Google Street View” dataset from

Pittsburg
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Table 1: Execution time statistics for one iteration of the loop detection algorithm of
the proposed method, the standard homotopy, and NN method on different datasets

Map Nearest Neighbor Standard homotopy Proposed Method
size mean (ms) std (ms) mean (ms) std (ms) mean (ms) std (ms)

City Centre 1.2K 1.91 0.20 3.59 2.28 0.40 0.26
New College 1.1K 1.74 0.23 3.32 2.52 0.39 0.22

Google Street 12.5K 26.80 1.53 77.34 33.40 4.97 0.82

Table 1 shows the quantitative results of Figs. 1, 2, and 3 in terms of
average execution time and standard deviation on the three datasets. For
small maps like City Centre or New College datasets, the proposed method
is 10 times faster than the standard homotopy on average. The execution
time on the Google Street View dataset in Table 1 shows the capability of
our method on large maps in comparison with the standard homotopy and
even NN method. The average computational time of the standard homo-
topy increases more than 20 times from around 3.5 ms to 77 ms, when the
map grows 10 times from around 1200 images to 12000 images; however, the
computational time for the proposed method only increases linearly, and the
standard deviation increases approximately 3 times when the map grows 10
times. In absolute terms, with crude extrapolation, our proposed algorithm
could potentially perform loop closure detection in a map with a million
images in under one second.

5.2 Loop Closure Detection Accuracy

In this part, we compare the accuracy of the proposed dynamic method
against the standard homotopy method for the loop closure detection. Fig. 7
and Fig. 8 show the precision recall curves of the proposed method and the
standard homotopy method on “City Centre” and “New College” datasets
respectively. Like before, no specific verification step was used and the de-
cision for closing loops is only based on simple thresholding of the top αi
as described in the Section 4.2. According to these figures, the accuracy of
the proposed method using a dynamic algorithm is essentially the same as
the standard l1-minimization method. Therefore, using the proposed method,
loop closure detection can be solved much faster without losing accuracy. We
also compare the proposed method with FAB-MAP as a baseline method for
large-scale dataset in Table 2. Although FAB-MAP is not the state-of-the-
art in terms of loop detection accuracy, it has been evaluated on the same
datasets as used in this work, and is therefore directly comparable. At 100%
precision, the proposed method achieves 68% and 57% recall on “City Centre”
and “New College” datasets with τ = 0.98 and τ = 0.45 respectively, which is
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Fig. 7: Precision and recall curves of
the proposed method, the standard
homotopy, and NN method for loop
closure detection on “City Centre”

dataset
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Fig. 8: Precision and recall curves of
the proposed method, the standard
homotopy, and NN method for loop
closure detection on “New College”

dataset

higher than the recall for FAB-MAP method reported in [6]. τ is empirically
chosen to allow comparison with other methods at 100% precision.

6 Conclusion

We have presented in this paper a novel technique to detect loop closure
that is highly efficient in time and competitive in detection accuracy. The
proposed method formulates the loop closure detection as a sparse represen-
tation problem. Since in visual SLAM the current view of the robot is similar
to the most recent previous image, we are able to update the obtained so-
lution from one iteration of static l1-minimization for loop closure detection
using the subsequent robot view without solving the minimization problem
from scratch. Using our dynamic update method, loop closure detection can
be solved much faster than the static method without losing accuracy. The
proposed method is therefore more scalable and able to handle larger robot
maps. The reliability and efficiency of the proposed method have been vali-
dated on three different publicly available datasets. In the future, we plan to
implement the proposed algorithm on real robots in an online SLAM system.

Table 2: Comparison of the recall between the proposed method and FAB-MAP as
baseline at precision 100%

City Centre New College
Proposed Method 68% 57%

FAB MAP 37% 48%
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