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Abstract In this paper we introduce CoPilot, an active driving aid that enables semi-
autonomous, cooperative navigation of an electric powered wheelchair (EPW) for
automated doorway detection and traversal. The system has been cleanly integrated
into a commercially available EPW, and demonstrated with both joystick and head
array interfaces. Leveraging the latest in 3D perception systems, we developed both
feature and histogram-based approaches to the doorway detection problem. When
coupled with a sample-based planner, success rates for automated doorway traversal
approaching 100% were achieved.

1 Introduction

The U.S. Department of Health and Human Services reports that the number of peo-
ple over the age of 65 will increase from 40.4 million people in 2010 to over 70 mil-
lion by 2030 [18]. This rapid growth in the U.S. elder population will also increase
the number of people with age-related symptoms that hamper their mobility. Such
common symptoms include visual impairments, dementia, and Alzheimer’s disease
[16]. Providing electric-powered wheelchairs (EPWs) to seniors (and others) is a
significant step in helping them live at home and maintain independent mobility.
However, it is not without its own challenges. Maintaining straight paths and avoid-
ing obstacles is often challenging - especially for drivers using alternative controls
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such as sip-and-puff devices, switch driving systems, chin controls, or short-throw
joysticks. Additionally, traditional joystick users with impaired hand control and
those who rely on “latched driving” modes (i.e., cruise control) for independence
and function may require additional assistance to ensure safe and comfortable mo-
bility. To realize the home health benefits of EPWs while also maintaining safety,
active safety systems for EPWs could be deployed.

To this end, we have developed CoPilot, an active driving aid that enables semi-
autonomous, cooperative navigation of an EPW. Similar to active driver-assist sys-
tems in automobiles, the driver remains in primary control of the vehicle, while in
the background, CoPilot uses intelligent sensing and drive control systems that work
in cooperation with the driver to aid in avoiding obstacles/collisions and fine preci-
sion driving tasks. The motivation is that as an individual begins to lose cognitive,
perceptive, or motor function due to age, injury, or disease, CoPilot can augment
that loss because it can interpret the user’s intent by seeing into the environment.
This exteroceptive sensing capability is enabled by leveraging the latest in three-
dimensional (3D) imaging technology. While being developed with a suite of semi-
autonomous driving behaviors in mind, the focus of this paper is automated door-
way detection and traversal. This functionality was motivated by discussions with
physical and occupational therapists in the wheelchair space who prioritized door-
way navigation as a capability that would provide real value to EPW users. CoPilot
provides near 100% effectiveness in this application.

2 Related Work

Doorway detection using 3D sensing has been accomplished in various ways. Rusu
et al. used 3D point clouds to locate doors [15]. The goal was to find doors for
the purpose of opening or closing them with a robotic manipulator. When the robot
was at a door location, a planar model was fit to the point cloud data. The models
were validated based on geometric constraints. More recently, RGB-D data has been
used for the task of parsing indoor scenes [6, 13]. The goal of which is to detect and
correctly label objects in indoor environments. This is a more difficult task than
looking for a single category of object, in our case doorways. These algorithms
are based on learning classifiers where the feature vectors are largely inspired from
computer vision techniques, such as histograms of oriented features. In our work, we
also leverage computer vision approaches for some aspects of doorway detection.

Early approaches of wheelchair systems capable of doorway traversal include [9,
19, 11]. For navigation, Levine et al. [9] and Yanco [19] both utilized an array of
sonar sensors and Parikh et al. [11] used a planar laser scanner. While these works
yielded successful demonstrations, the limitations of the sensors were not neces-
sarily suitable for use in cluttered environments. For example, depending on sensor
placement, these approaches might be susceptible to navigating through a table be-
cause the table legs could be detected but not the table top.

The work most similar to our own is Derry and Argall [3], where the goal was
to detect open doorways suitable for wheelchair traversal. Their approach involved
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processing point cloud data to fit planar models under the assumption that gaps in
the planar model correspond to doorways if they meet certain geometric criteria. A
key difference in approaches is that while their focus was in processing point clouds,
our algorithms emphasize processing the depth images directly. Furthermore, their
investigation was limited to doorway detection. In contrast, CoPilot provides a com-
plete solution for automated doorway navigation.

3 Development Platform

The development platform used in this research was based on the Quantum Q6 Edge
electric powered wheelchair (EPW) shown in Fig. 1. The Q6 features motors with
integrated encoders for measuring wheel velocities. To access these for odometry
purposes, we interfaced an on-board embedded computer with the EPW’s motor
controller over the CAN bus. It also enabled the regulation of the EPW’s linear and
angular velocities via a software-based PID.

Fig. 1 CoPilot integrated into an Quan-
tum Q6 Edge EPW.

Exteroceptive sensing was from two Prime-
sense Carmine 1.09 sensors. The Carmine 1.09
is the shorter range version of the Primesense
structured lighting sensor. It has an advertised
effective range between 35-140 cm (compared
to 80-350 cm for the standard range Carmine
1.08). The decision to use the short range vari-
ant was to ensure that doorways and obstacles
remained visible in close proximity to the chair.
However, the maximum range of 1.4 m was ex-
tremely limiting. We addressed this through an
intrinsic calibration procedure which extended
the effective range to approximately 3 meters
with little degradation in accuracy. This is dis-
cussed in detail in Section 4.1. Two sensors
were used in order to increase the total field of
view. This ensured better coverage of the chair
footprint (to avoid collisions with obstacles), as
well as facilitated doorway detection at a range
of chair orientations. The mounting positions of
the sensors are depicted in Fig. 1. Note that the sensors are mounted vertically rather
than horizontally as this was found to be a less obstructive configuration.

The software was developed using the Robot Operating System (ROS) [12]
framework and modularized based on ROS’ message passing paradigm. For basic
image processing and point cloud manipulation, we leveraged the OpenCV [2] and
Point Cloud Library (PCL) [14] projects respectively. Processing was via a separate
onboard computer with a 2.2 GHz Intel Core i7 processor and 8 GiB of RAM.
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4 CoPilot Perception
4.1 Intrinsic Sensor Calibration
As alluded to in Section 3, the maximum advertised range of the Carmine 1.09 (1.4
meters) was insufficient for effective doorway detection. While objects at depths far-
ther than 1.4 meters could still be detected, the triangulation based nature of struc-
tured light sensors induces a nonlinear noise model of the form |δ z|∝ z2|δd|, where
δ z is the error in the depth observation, z is the actual depth, and δd is the error
in disparity. In other words, errors grow quadratically with depth. This can be mit-
igated by using an appropriate error model and adjusting the depth measurements
accordingly. Unfortunately, global distortion models used for traditional camera cal-
ibration are of limited use as sensors based on the Primesense appear to have irregu-
lar distortion patterns unique to each individual sensor [17]. While they propose an
unsupervised procedure to intrinsic calibration in [17], we use an alternate approach
that while supervised, is fast to use and significantly less complex to implement.

Starting at the minimum effective range of the sensor, the user captures a depth
image of a nominally flat wall. The sensor is then moved incrementally farther
from the wall, and a new image is captured out to the maximum sensor range.
For example, if the minimum and maximum ranges of interest were 0.5 m and
3.0 m respectively, depth images would be captured at nominal depths of z =
[0.5,1.0,1.5,2.0,2.5,3.0] meters. Note that the exact spacing is not critical. However,
the accuracy of the depths z is the basis for the calibration, and must be measured
accurately. This can be readily accomplished using standard tools (e.g., a tape mea-
sure or laser distance measurer). It is also important that the sensor’s optical axis
be roughly normal to the wall surface. To ensure this, we developed an application
that provides visual feedback of the alignment error between the sensor’s optical
axis o and the wall’s surface normal nw. This is estimated by using RANSAC [4]
to automatically segment the wall plane in real-time. The user then adjusts the sen-
sor orientation until ||o×nw|| ≈ 0. In practice, an alignment error of ≤ 1 degree is
adequate for calibration, and easily obtained.

Given a set of k point cloud images P = [P1, . . . ,Pk] and corresponding ground
truth depth measurements z, the remainder of the calibration process is completely
automated. For each P ∈ P, we recover the parameters for the respective wall planes
Π = [Π1, . . . ,Πk] where the relative orientation is again estimated using RANSAC
and the translation using the depth measurements z. Given robust estimates of the
actual wall’s relative positions and orientations Π , the point clouds P are adjusted
to ensure that each point pi(i, j) ∈ Pi lies on its respective plane Πi. This is accom-
plished by generating a set of scaling coefficients K = K1, . . . ,Kk for each point of
each point cloud. We denote the corrected point cloud set as P∗.

The scaling coefficients K are to this point limited to the discrete set of ranges z
where calibration data were collected. These are generalized to continuous space by
modeling the scaling coefficients as a quadratic function of scene depth, i.e.,

K(i, j,z) = A(i, j)z2 +B(i, j)z+C(i, j) (1)
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where (i, j) are the pixel coordinates of the point cloud. Thus, every sensor pixel
has it’s own specific quadratic function k(i, j,z) that is used to determine the scal-
ing factor at a given depth z. The quadratic coefficients [A(i, j),B(i, j),C(i, j)] for
each pixel (i, j) are recovered as a least squares solution minimizing the residuals
between P and P∗. The coefficients are calculated offline, and stored in three Look
Up Tables (LUTs) A,B,C corresponding to the respective quadratic coefficients.

A point cloud P of m× n points can be described through its Euclidean coordi-
nates X ,Y,Z ∈ Rm×n where each matrix entry corresponds to the x,y,z coordinates
of the respective point. To calculate the corrected points, the following operations
are performed on the streaming point cloud:

K(i, j) = A(i, j)∗Z(i, j)2 +B(i, j)∗Z(i, j)+C(i, j) ∀ (i, j)

X∗(i, j) = K(i, j)∗X(i, j)

Y ∗(i, j) = K(i, j)∗Y (i, j)

Z∗(i, j) = K(i, j)∗Z(i, j)

where X∗,Y ∗,Z∗ denote the corrected point set. Thus, online intrinsic calibration
can be performed at a cost of only several floating point operations and array look
ups per point.

We have used the calibration procedure extensively over the past year, and per-
formance has been very good. A sample calibration run is shown at Figure 2. The
left sub-figure shows a point cloud before (top in red) and after (bottom in blue) cal-
ibration. Qualitatively, we see that both the distortion and dispersion of the points
were significantly reduced. This is also reflected quantitatively in the center-right
sub-figures, which show the mean error and mean standard deviation of the points
vs. scene depth (pre-calibration and post-calibration). The reductions in both error
and variance were significant, clearly demonstrating the efficacy of the approach.

Fig. 2 (Left) Sensor points before (top) and after (bottom) intrinsic calibration. Note that both
point distortions and dispersion is reduced. This is also reflected in the mean error (center) and
standard deviation (left) of the points.

4.2 Depth Image Warping & Fusion
Our approach to doorway segmentation relies heavily upon the observation that
doorway border features are strongly vertical. We further observe that computation-
ally, these features can be extracted most efficiently if the sensor frame is aligned
vertically with the world frame, i.e., the gravity vector. An analogy would be the
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motivation for rectification of stereo image pairs. As a result, we warped and fused
the depth image pair as a pre-processing stage.

Given two point clouds PL,PR associated with the left and right sensors, respec-
tively, the first step was to warp the points to a common coordinate frame F. We
chose F to be centered between the actual sensor positions, and with an orientation
identical to the EPW vehicle frame. Using the extrinsic calibration relating the sen-
sor and vehicle frames, we recovered the rigid transformation between the frames
and transformed the points in each point cloud

P̂L = CRLPL +
CtL (2)

P̂R = CRLPR +
CtR (3)

where (CRL,
CtL) and (CRR,

CtR) were the rigid transformations relating the left and
right sensor frames to F. Since most of our processing will be in the depth image
space, we next calculated the back projection of P̂L, P̂R to form the fused depth im-
age ID. In doing so, a couple of subtleties needed to be addressed. First, the back
projection of points do not lie on exact pixel boundaries. As a result, we use a near-
est neighbor interpolation scheme to form the depth image. Second, there was the
potential that a point in both P̂L and P̂R would warp to the same pixel ID(i, j). In this
event, the depth of the closer point was used.

The process is reflected in Figure 3. The left-center sub-figures show the raw
depth images from the left and right sensors. Note that when mounted on the EPW,
the sensors were rolled approximately 90 degrees which explains the vertical ori-
entation of the depth images. The right sub-figure shows the resulting depth image
ID after transforming and fusing the point clouds. All subsequent image and point
cloud processing is done using this image as input.

Fig. 3 (Left-Center) Raw depth images of a doorway from the left and right sensors. (Right) Fused
depth image.

4.3 Real-time Doorway Detection
After the transformation outlined in Section (4.2), vertical edges in the real-world
map to vertical columns in ID. The doorway detection procedure exploits this fact to
efficiently find doorway boundaries based on salient features in the depth image. We
evaluated two approaches to finding doorway boundaries, a feature based approach
and a histogram based approach. After a set of doorway boundaries was obtained
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(from either approach), they were then validated based upon geometric constraints.
We now describe the process in detail.

4.3.1 Feature Based Doorway Boundary Detection

Doorways are transition features between interior and exterior space. When viewed
within a depth image ID, they appear as spatial discontinuities. This is to be ex-
pected, as there must be sufficient free space to accommodate pedestrian (or EPW)
traffic across the spaces. We leveraged techniques traditionally used in 2D image
processing to localize this discontinuity, and by association the doorway edges. To
enhance these edges, we convolved ID with a [−1,0,1] kernel to generate the hor-
izontal gradient image, and then thresholded based upon the size of the depth dis-
continuity to generate an edge image ED. The next step was to identify edges of
sufficient length to be classified as a doorway edge. Note that simply summing the
edge pixels for each column of ED would produce incorrect results for two reasons:
(i) the edges could actually be at different depths in 3-space, possibly corresponding
to multiple objects, and (ii) the resulting sum would be biased towards objects close
to the sensor because they subtend more pixels.

The first problem was mitigated by calculating the median depth z̄k of each col-
umn k of ID and generating a copy of the depth image, MD, where values in column k
are set to zero if they are not within some specified distance to z̄k. The idea was that
true doorway edges would represent the majority of the edge length in the column,
and the median value would therefore lie upon this edge. The second problem was
addressed by weighting the depth measurements with the height of the unit pixel ph
subtended at the respective depth. The approach can be expressed concisely as

Φ = 1T (ph ·ED�MD) (4)

where 1 is a column vector of all ones, � denotes elementwise multiplication, and
Φ defines a row vector where each component corresponds to the edge height in
each column. Each component in Φ was evaluated based on a minimum height
requirement. The set of columns that meet the threshold were marked as potential
doorway boundaries at a depth of z̄k.

The process is illustrated in Figure 4. The left sub-figure shows the edge im-
age ED. The center image shows edge pixels overlaid on the fused RGB-D image.
The right image shows edge clusters projected to the x− y plane. Note that each
cell represents a potential doorway boundary, so that multiple candidates can be ob-
tained from a single doorway image. Discriminating the correct edge (e.g., the front
doorway edge vs. the rear) will be discussed in Section 4.3.3.

We quickly determined that by themselves, doorway edges were an insufficient
feature for doorway detection. For example, an inward opening door may not offer
a strong edge on the hinge side as the door face can provide a smooth transition
into the room. As a result, we also integrated corner features into our classifier. To
do this, we first generated a 2D histogram H(x,y) that bins points in 3-space to the
ground plane. After applying the Harris operator to H(x,y) [7], we identified the
set of bins C in H(x,y) that corresponded to corner features using an appropriate
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Fig. 4 (Left) Edge image of doorway. (Center) Edge pixels identified in the scene. (Right) Top
down view of door edge coordinates.

threshold. Marking a column as a potential doorway based on C required a small
amount of effort since measurements from multiple columns could fall into the same
bin. For each Ck ∈C, we found the data point x closest to the centroid of the bin and
marked the associated column as a potential doorway boundary at a depth equal to
the distance to x.

The corner detection process is illustrated in Figure 5. The left sub-figure shows
the fused depth image. The center image shows corner pixels overlaid on the fused
RGB-D image. The right image shows valid corners projected to the x− y plane.

Fig. 5 (Left) Fused depth image of doorway. (Center) Corner pixels identified in the scene. (Right)
Top down view of doorway corner coordinates.

In practice, our feature based approach was very successful at segmenting door-
ways. However, its computational complexity - dominated by the corner segmen-
tation component - was of concern. This motivated our investigation into the
histogram-based approach described below.

4.3.2 Occupancy Histogram Doorway Boundary Detection

Our feature-based approach attempts to directly identify the doorway boundaries,
leaving only a small number of candidates as input to the validation procedure out-
lined in Section 4.3.3. However, this comes at the expense of significant up-front
computation. As a result, we investigated a simpler descriptor. It is based upon the
observation that the segmented edge and corner features were subsets of all columns
largely occupied by a vertical object. For edge and corner features, we expend sig-
nificant computational resources verifying that neighboring columns in 3-space are
not occupied. But what if we simply identified each column that had a high occu-
pancy rate as a potential doorway boundary? Undoubtedly this would lead to a much
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larger number of candidates for validation, but in practice the computational savings
in image and point cloud processing more than makes up for this expense.

In effect, the depth image was reduced to a 1-D occupancy histogram. To accom-
plish this, we simplified the approach summarized in (4) to

Φ = 1T (ph ·MD) (5)

which yielded a row vector where each component was the height of the object in
each column corresponding to the median value z̄k. In other words, where in (4)
we accumulated edge lengths, in (5) we are accumulating object height. Φ is now
a 1D histogram of heights per bin where each bin corresponds to a column in MD.
Thresholding each component of Φ on a minimum height requirement segments
every column that corresponds to a large vertical object.

When combined with the validation procedure in Section 4.3.3, this approach
worked surprisingly well in practice. Compared to the feature-based approach, the
implementation is far simpler as neither edge nor corner detection is required. It is
also more efficient computationally. With a Primesense at VGA resolution (640 ×
480), the feature based approach detected doorways at 12 Hz on the computer in
Section 3. By comparison, the histogram approach ran at frame-rate (30 Hz). In the
current version of CoPilot, the occupancy histogram approach is used exclusively.

4.3.3 Doorway Validation

Given the columns marked as candidate doorway boundaries and the associated
depth depth values, the role of the doorway validation procedure is to find the
best estimate of the relative position and orientation of the doorway. Algorithm 1
VALIDATE-DOORS outlines the procedure of reducing the set of doorway bound-
aries to a set of doorway candidates D. Each pair of doorway boundaries must meet
geometric constraints based on the width of the doorway (line 5), the orientation of
the EPW to the doorway (line 5) and the amount of free space beyond the sill of the
doorway (lines 10-14). Guided by the American’s with Disability Act (ADA) [1]
accessibility guidelines, minimum and maximum doorway widths were set to 82
cm and 162 cm, respectively. The orientation constraint was set to ±45◦ and the
free space beyond the doorway had to be sufficient to accommodate the EPW foot-
print. Doorway width and orientation validation are performed by the GEOMETRIC-
VALIDATION sub-procedure.

Computationally, the most expensive part of VALIDATE-DOORS is the INTER-
SECT sub-procedure which verifies that sufficient free space exists beyond the can-
didate doorway via ray-tracing. In theory, there could be O(n2k) calls, where n is the
number of columns and k is the number of free space tracing operations per door-
way boundary pair. In practice, this will not happen due to constraints on doorway
width, sensor field-of-view, and wheelchair orientation. When benchmarked with a
single Primesense at VGA resolution, VALIDATE-DOORS had a mean run time of
approximately 3 ms with a standard deviation of approximately 1 ms.

The doorway validation procedure returns the set of valid doorways D with the
relative position of the doorway’s center and its orientation. Note there is high prob-
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Algorithm 1 Door Validation
1: procedure VALIDATE-DOORS(O,B) . O: obstacle coordinates, B : boundary coordinates
2: D← /0 . set of valid doorways
3: for i← 0 to n−1 do
4: for j← i+1 to n do
5: if GEOMETRIC-VALIDATION(B[i],B[ j]) then
6: continue
7: end if
8: is valid← true
9: for k← i to j do . trace free space

10: p← INTERSECT(B[i],B[ j],k) . line segment intersection point
11: if ‖O[k]‖< ‖p‖ then
12: is valid← false
13: end if
14: end for
15: if is valid = true then
16: D∪{[x,y,θ ]T } . add doorway pose
17: end if
18: end for
19: end for
20: end procedure
21: Note: The loops on B continue early when the column has no associated doorway boundary.

ability that the classifier will return multiple doorway candidates. However, these
will typically be variants of the actual doorway opening (e.g., front edge to rear
edge, front corner to rear edge, door stop to front corner, etc.). To ensure consistent
position and orientation estimates, we wish to identify only the front edges/corners
of the doorway. To this end, we use a heuristic of choosing the closest doorway
candidate. In practice, this has worked quite well for detecting the actual doorway.

The process is illustrated in Figure 6. The center sub-figure shows the valid door-
way candidates (red arrows), and the right sub-figure the chosen doorway. The latter
well approximates the doorway position and orientation.

Fig. 6 (Left) Free space check for feature pairs. (Center) The set of valid doorway features. (Right)
The final doorway chosen using the “nearest doorway” doorway heuristic.
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5 Autonomous Doorway Navigation

At the user level, the CoPilot interface is very intuitive. The user switches the EPW
controller drive mode to “CoPilot” and manually drives towards the door. As soon
as CoPilot detects the doorway, an icon appears on the LCD control panel. The user
then pushes a single button to effect doorway traversal. Note also that the user can
also steal back control from CoPilot at any time by simply touching the joystick.

At the software level, doorway navigation is decomposed into two primary sub-
tasks: mapping the environment, and given such a map perform real-time planning
and control of the EPW for safe and reliable doorway traversal.

5.1 Mapping

Fig. 7 Costmap C(x,y) of the EPW
at a doorway. The black line denotes
the desired path.

The local map was a 2D occupancy grid cen-
tered at the current EPW pose. We leveraged ROS
for populating and clearing cells in the local map
through ray tracing techniques [12]. For naviga-
tion purposes, 3D points were projected down to
a 2D costmap M where the individual cells were
categorized as either occupied (i.e., obstacles),
free, or unknown. Each cell M(x,y) was also as-
signed a cost C(x,y) based on its proximity to ob-
stacle cells taking into account the vehicle foot-
print. If the EPW were to occupy a cell (x,y), and
any portion of its footprint would overlap with an
obstacle cell, C(x,y) would be assigned a lethal
cost making it untraversable by the local planner.
Otherwise, obstacles were modeled by exponen-
tial functions. The resulting costmap was then in-
put to the local planner for trajectory planning.
In our implementation, map updates were done
asynchronously whenever a scan from either of
the sensors was available, with an objective feedback rate of 15 Hz.

Figure 7 shows a top-down view of the costmap for the EPW staring at a door-
way. The doorway edges are inflated by the potential function to define traversable
regions in the costmap. Cyan colored cells correspond to regions with lethal cost,
while the transition region from red to dark blue is traversable with decaying cost.

5.2 Planning
The global planner for doorway navigation is very intuitive. Given a doorway posi-
tion and orientation, the it constructs an objective path down the doorway centerline
with the same orientation as the doorway itself. A goal pose G = [xg,yg,θg] is then
placed on this path the length of the EPW through the doorway.

For local planning, we employed a traditional sample based approach on the input
space of the linear and angular control velocities (v,ω) [8]. The range of velocities
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sampled was v ∈ [0.1,0.4] m/s, and ω ∈ [−0.3,0.3] rad/s. Each sampled trajectory
Ti was then evaluated against a cost function

C(Ti,M) =Cobst +Cgoal +Cpath (6)

Cobst was the maximum obstacle cost of any cell along the specified trajectory.
If Cobst > Cmax, the obstacle cost was considered fatal and the associated trajec-
tory discarded. Cgoal was proportional to the distance from the current EPW posi-
tion to G. Similarly, Cpath was proportional to the to the distance from the EPW
position to the path derived from the doorway’s centerline. The optimal trajec-
tory T ∗ = argminC(T,M) was then selected, and the associated velocity command
(v∗,ω∗) ∈ T ∗ was issued to the CoPilot motor controller.

6 Experiments

The doorway navigation behavior for CoPilot is extremely effective. ADA compli-
ant doorways can be navigated with near 100% reliability. The mapping capability
also allows CoPilot to identify both static and dynamic obstacles in the environment,
and react to these accordingly (i.e., by avoiding the obstacle or stopping when nec-
essary). As additional anecdotal evidence of its performance, CoPilot was recently
demonstrated at the headquarters of a major EPW manufacturer. The system was
fully integrated into an EPW with a user-friendly interface. When placed in CoPilot
driving mode, an icon would appear on the EPW’s control display when a door-
way was detected. The user then simply pressed a button to initiate door traversal.
Although no data was collected during the demonstration, the system was tested
by numerous company representatives across a large population of doors. CoPilot
successfully traversed every door that the participants attempted.

To support this paper, a more formal experiment was conducted over the course
of several days at various locations around the Lehigh University campus. During
this time, the EPW was operated in a natural fashion with no attempt to specifically
align the wheelchair into a favorable pose. A total of 100 traversals of 100 unique
doorway instances were attempted. All were successful. Fig. 8 depicts a sample of
the doorways that were traversed. Note that CoPilot was even successful navigating
through doorways where structured lighting systems might be expected to struggle,
e.g., doorways with glass doors. Fig. 9 shows the variety of starting EPW poses and
a probability mass function of the door widths. Note also that the large majority of
the doorways were at the lower range of ADA compliant doorway widths.

In terms of “failure modes,” the doorway detection system used in CoPilot is
susceptible to false positives in that clustered vertical objects meeting the geometry
constraints could be interpreted as doorways. For example, two tall file cabinets with
a sufficient opening in between would be segmented as a doorway. However, while
some may consider this a false positive, others might consider it a feature as it gener-
alizes CoPilot to traversing a larger range of narrow openings. We should emphasize
that since migrating to the occupancy histogram approach to doorway segmentation,
no false positives have been observed when attempting an actual doorway traversal.
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Fig. 8 Examples of the variety of doors successfully traversed

Finally, videos demonstrating the use of CoPilot can be found at http://
loveparkrobotics.com/?p=993 and http://loveparkrobotics.
com/?p=997. The latter shows CoPilot integrated with a head array controller,
an input device not well suited for the doorway navigation tasks. With the EPW in
CoPilot mode and the doorway detected (i.e., when it puts the icon on the screen),
a momentary tap of the rear switch embedded in the head-array will signal CoPilot
to initiate door traversal. Just as with the Joystick mode of operation, the user can
steal back control at any time by pushing the head-array switches.

Fig. 9 (Left) visualization of EPW starting poses with respect to a doorway centered at the origin
with an orientation of −90◦ and (right) the probability mass function of the traversed door widths.

7 Conclusion
In this paper we introduced CoPilot, an active driving aid that enables semi-
autonomous, cooperative navigation of an EPW for automated doorway detection
and traversal. The system was fully integrated into a Quantum Q6 Edge EPW using
both joystick and head array controls. For doorway detection, we investigated both
feature and histogram based approaches. The latter exhibited at least as good perfor-
mance with significantly lower computational burden. Coupled with a sample-based
planner, CoPilot demonstrated near 100% reliability in detecting and traversing a
large population of doorways when employed by a range of users. We are currently

http://loveparkrobotics.com/?p=993
http://loveparkrobotics.com/?p=993
http://loveparkrobotics.com/?p=997
http://loveparkrobotics.com/?p=997
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investigating the integration of additional driving aids for CoPilot, to include active
braking for real-time collision avoidance and corridor following.
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