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Abstract In this systems description paper, we present a multi-robot solution for
intelligence-gathering tasks in disaster-relief scenarios where communication qual-
ity is uncertain. First, we propose a formal problem statement in the context of
operations research. The hardware configuration of two heterogeneous robotic plat-
forms capable of performing experiments in a relevant field environment and a suite
of autonomy-enabled behaviors that support operation in a communication-limited
setting are described. We also highlight a custom user interface designed specifically
for task allocation amongst a group of robots towards completing a central mission.
Finally, we provide an experimental design and extensive, preliminary results for
studying the effectiveness of our system.

1 Introduction

Humanitarian assistance and disaster relief (HA/DR) has long been appreciated as
one of the most compelling applications of robotics technology, giving responders
tools to sense and act in dangerous environments [24]. For example, the use of
robots in the aftermath of the Fukushima Daiichi nuclear disaster has been well doc-
umented [19, 25], and analysis of the response suggests that action at one of several
“inflection points” of the crisis would have probably averted further catastrophe [31]
if those actions had not been deemed too dangerous at the time. Partly inspired by
these implications, the DARPA Robotics Challenge was conceived to catalyze the
focused development of solutions for solving the myriad of challenges related to
locomotion, manipulation, perception, and human interface that are needed to build
a robot that can act as a stand-in for humans at such “inflection points” in the future.

Though this “avatar” concept inspires the imagination, we would argue that
robotics has an even more important role to play in the broader HA/DR mission as
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the backbone for the required information-gathering activities that lie at the heart of
any coordinated response. As an illustration, the Foreign Humanitarian Assistance
manual published by the U.S. Department of Defense [34] identifies that the mili-
tary will primarily assist in a few ways to a disaster requiring government response:
with the first-responder Crisis Action Team tasked as the immediate responder and
assessor for the regional commander; and with the Humanitarian Assistance Survey
Team whose primary responsibility is assessment, such as dislocated populations,
degree of property damage, and remaining communications infrastructure. These
are all activities that feed into the planning phase that must happen before any larger
action can be carried out. Though not quite as exciting as a humanoid robot that
wades through a flooded disaster site to extinguish a critical fire, we believe a het-
erogeneous, multi-robot team that can quickly navigate through an environment to
quantify an emerging situation is more important to the timeliness and success of
the larger response.

Two important focal points of multi-robot systems deployed in a primarily
information-gathering sense have been the Robocup Rescue League [14] and the
MAGIC 2010 competition [26, 15]. From these activities, we learn that, although
physical platform capabilities play a role, the majority of the system complexity is
derived from the overarching operational problems of team management and com-
munication.

Toward this end, this work establishes a preliminary formal problem descrip-
tion that places an HA/DR-inspired, information-gathering mission in an operations
research context (Sec. 2). The primary contribution of this work is to provide docu-
mentation and analysis of a multi-robot system capable of performing intelligence-
gathering tasks in communications-limited, disaster-relief scenarios. We present the
design of such a system (Sec. 3), a set of autonomy-enabled behaviors that can be
used to address the HA/DR mission in a relevant environment (Sec. 4), and a user
interface that allows a human operator to task the system (Sec. 5). Finally, we report
extensive experimental results, which address the current capabilities of our system
with respect to the implementation of a solution to the HA/DR mission (Sec. 6).

2 Problem Statement

Within the scope of information-gathering activities required for planning a re-
sponse to a HA/DR scenario, we focus on simultaneously solving two specific prob-
lems: the evaluation of damage to infrastructure in the environment, e.g., traversabil-
ity of roads; and localizing particular targets of interest, e.g., a potentially injured
“very important person” (VIP) who we discover through sensing a radio signal, such
as a cell phone. This problem statement contains both a priori goals (key assessment
sites established from prior maps) and dynamic goals (the existence and possible lo-
cations of targets), and a solution must focus on effectively balancing between these
two types of goals. Moreover, we address the issues of unreliable autonomy and lim-
ited communications through incorporation of dynamically uncovered costs, and we
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cast the entire problem as a dynamic variant of the Capacitated Team Orienteering
Problem with details discussed below.

If we considered only the problem of efficiently visiting a set of locations derived
from prior maps of the environment, a classical formulation would suffice. Initially
it could be as a well-studied Vehicle Routing Problem (VRP): with known travel
costs between sites, find paths for multiple vehicles to visit all sites that minimize
total travel costs. However, since we may assume that the mission is time-critical
and some sites are likely to be more interesting than others, we could instead for-
mulate it as a Team Orienteering Problem (TOP): with known travel costs between
sites and known rewards for visitation, find paths that maximize the total gathered
reward with a fixed cost bound [35]. The environment limitations suggest one final
modification.

Because the environment is communications-limited, we conjecture that as we
send robots to visit sites and gather information, we need them to eventually return
to communications range in order to offload their information before it becomes too
outdated. This is most closely modeled as a Capacitated Team Orienteering Problem
(CTOP): as a TOP but with a constraint on the total reward that any individual
vehicle may gather on a single trip [13].

A key component of the problem is the dynamic goals that arrive because of
detecting unknown targets. We model these as dynamically-updated rewards avail-
able at the visitation sites of the CTOP, and we assign the value of these rewards
according to the expected information gain about the target location using the avail-
able sensing, similar to information-guided exploration strategies [30]. If we assign
a distribution to these rewards initially or as the mission progresses, there is prior
work on solving TOPs with stochastic rewards [36] that could apply.

The last challenge is to incorporate the effects of unreliable autonomy, which we
model as unknown travel costs between visitation sites: we may have some intuition
about how likely it is for a given site-to-site navigation to be successful, but ulti-
mately we build a navigation risk model during operation in the environment. It is
important to note that failed navigation is not necessarily fatal because we assume
we have backup behaviors to return to a known safe location. If we assign a distri-
bution to these costs, there is prior work on solving TOPs with stochastic costs [16]
that could apply.

Our preliminary formal problem formulation is thus as a Capacitated Team Ori-
enteering Problem with stochastic (unknown) costs and rewards. We ask: what value
is it to have such a formal problem given that we are not developing an online
planner to demonstrate through these experiments? The answer is that having the
solution for any specific mission instance gives us an upper-bound on how well
any autonomy or human could perform at the task and therefore gives us a metric
to know when the system is improving. Even for the case of unknown costs and
rewards, we can solve the plan as if the costs/rewards were known up front or solv-
ing it in a receding-horizon fashion as information is uncovered. Developing these
upper-bounds for this experiment remains future work.
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3 Experimental Multi-Robot System

We present a heterogeneous, multi-robot system with a rich sensor suite, composed
of hardware and software components for autonomous operations in relevant envi-
ronments. In particular, our focus is on moving from small-scale systems operating
in controlled laboratory environments to the study of interacting systems and the
development of algorithms that can robustly operate in real-world scenarios.

3.1 Hardware

Two robotic platforms are used in this work: an iRobot PackBot [8] and a Clearpath
Robotics Husky [3]. The PackBot, seen in Figure 1(a), is a military-grade, tracked
platform capable of speeds up to 2 m/s and traversing both indoor and outdoor ter-
rains. To enable autonomous operation, the PackBot is outfitted with a processing
payload containing a Quad-Core Intel i7 ICOM express board and a 256 GB solid-
state drive (SSD). The PackBot collects 3D point cloud data by nodding a Hokuyo
UTM-30LX-EW LiDAR [5] with a Dynamixel servo. This Hokuyo LiDAR has a
270◦ field of view, 30 m range, and 1 mm resolution. Accurate state information is
achieved using a MicroStrain 3DM-GX3-25 inertial measurement unit (IMU) [6]
mounted on a custom-made vibration isolator. Additionally, a Garmin 18x PC GPS
sensor [4] is elevated on a mast in an effort to receive better GPS measurements.
Finally, an ASUS Xtion Pro Live provided RGB data [1].

The second robot used in this work, the Clearpath Husky seen in Figure 1(b),
is a larger, wheeled platform that is limited to a maximum velocity of 1 m/s and
is best suited for outdoor operations. Similar to the PackBot, the Husky employs a
MicroStrain 3DM-GX3-25 IMU and a Garmin 18x PC GPS. The Husky is equipped
with two Quad-Core Intel i7 Mini-ITX processing payloads, each with a 256 GB
SSD. The Husky has a Velodyne HDL-32E LiDAR [12], which generates a 360◦

point cloud of 700,000 points per second at a range of 70 m and an accuracy of up
to ±2 cm. Finally, the Husky collects imagery data using a Prosilica GT2750C, 6
megapixel CCD color camera [9].

Both robots use Ubuntu 14.04 (Trusty) and leverage the open-source Robotics
Operating System (ROS) Indigo [27] to support higher-level algorithms for map-
ping, navigation, and autonomous capabilities.

To provide the necessary wireless connectivity, we utilize off-the-shelf IEEE
802.11.g radios operating in the 2.4 GHz frequency band and capable of 28 dBm
transmit power. The PackBot and Husky are equipped with Ubiquiti RouterStation
Pro and PicoStation2HP respectively [11]. Each wireless radio operates in AdHoc
mode and runs of the open-source embedded Linux distribution OpenWRT [7] with
end-to-end connectivity supported by the B.A.T.M.A.N. mesh routing protocol[2].
Since the focus of these experiments was not on teaming or inter-robot communica-
tion, we allocated each robotic platform with a unique frequency for communication
and placed the “base station” in an advantaged location, i.e., a tower approximately
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(a) (b)

Fig. 1 The hardware configurations of (a) the iRobot PackBot and (b) the Clearpath Husky.

20 m above the ground [10]. The placement of the “base station,” environment com-
plexity, and the fact that each robot’s radio was placed very close to the ground
induced a communication environment within our experimental facility that clearly
exhibited regions of high-bandwidth reliable communication, intermittent unreliable
communication, and no communication at all. While the B.A.T.M.A.N. routing pro-
tocol supports multi-hop communication, we restricted all communication in this
experiment to be over a single wireless link in order to simplify the modeling of
communication capabilities.

The search for an injured VIP can be represented by localizing a radio frequency
beacon, e.g., a cell phone. In fact, a variety of spatial information-gathering tasks,
including chemical and radiation analysis, can be emulated with radio signal propa-
gation from one or more beacons. We use a low-power IEEE 802.15.4 XBee radio,
shown in Fig. 2, to broadcast a beacon once per second at 2.4 GHz. Each robot also
carries a XBee radio and records radio signal-strength when it successfully receives
packets from the beacon while traversing the environment in pursuit of the other
data-collection tasks.

Fig. 2 XBee ”beacon signal” transmitter with protective case.
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3.2 Mapping

The simultaneous localization and mapping (SLAM) problem focuses on the re-
quirement for precise, consistent knowledge of the robot’s trajectory as it gathers
sensor measurements and has been studied for some time in the robotics literature
[22, 32]. We adopt a modern graph-based solution to the SLAM problem based
on the square-root smoothing and mapping (

√
SAM) technique [17] and the GT-

SAM software library developed at the Georgia Institute of Technology[18]. Our
technique leverages the Generalized Iterative Closet Point (ICP) algorithm [29] for
dense inter-frame matching of point cloud data and loop closure constraints. GPS
measurements, when available, are robustly incorporated into our solution based on
the techniques described in our previous work [28].

We refer to our SLAM system as OmniMapper due to its ability to integrate sen-
sor data from a variety of sensor sources including laser scanners and 3D cameras.
We divide the components of this system into a backend, the OmniGraph, which is
responsible for solving the factor graph representation of the SLAM problem, and
a frontend, the OmniCache, which is responsible for managing sensor data and per-
forming computations that yield the probabilistic factors connecting nodes in the
factor graph. The OmniGraph solves for the robot’s optimal trajectory using the
GTSAM library; the frontend tasks of data association and generating relevant mea-
surements is handled by the OmniCache. The point-cloud OmniCache used in this
work receives local point-cloud data aggregated over small time windows based on
the odometry of the robot and serves two primary purposes. First, it can respond to
queries about the relative pose of two local point-clouds via ICP algorithms in order
to generate measurement factors. Second, it acts as a pipeline for generating a series
of data products based on the underlying local point-cloud data. This includes a set
of intrinsic products, i.e., ones that are invariant to the global pose of a local point-
cloud, such as per-cloud terrain classification, occupancy grid rendering, and terrain
height estimation. Other products are extrinsic, i.e., ones that must be recomputed
after optimization of the factor graph yields a new optimal trajectory for the robot,
including an aggregated point cloud and composite occupancy grid map. A block
diagram of the relevant components of the OmniMapper can be seen in Figure 3.
Once an optimized trajectory is computed, each robot broadcasts its current loca-
tion in a GPS-based reference frame to all clients. This broadcast is at a low enough
rate so that it does not significantly impact the bandwidth available to other services
on the network. The position data of other agents are inserted as obstacles into the
robot’s costmap, which is later used for planning and trajectory generation.

3.3 Navigation

We use a three-stage architecture, consisting of a global motion planner, a local plan-
ner, and a local controller, to drive our software design within the ROS framework.
Each stage of the navigation system depicted in Fig. 3 is implemented as a node,
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(Trajectory Generation)
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Fig. 3 Architecture for autonomous mapping and navigation.

or independent software process, which provides an ActionServer interface that re-
sponds to an abstraction of the navigation problem. ActionServer interfaces are a
ROS construct used to deal with long-running tasks and include an internal state ma-
chine to manage the setting of goals, task feedback, and eventual completion state,
i.e., success or failure. For instance, the global planner provides a ComputePlan ac-
tion, which takes as input a starting and goal pose – given the current map, it returns
an optimal, kinematically feasible path. The local planner provides a ComputeLo-
calPlan action, which takes a global plan as input and uses the robot’s current pose
and a local map of dynamic obstacles to find a short-term high-resolution path that
follows the global plan. In this formulation, the local planner is capable of generat-
ing high-resolution plans over a short time-horizon while the global planner helps
prevent the system from being trapped in local minima caused by non-convex envi-
ronments. Finally, the local controller provides a ControlToPlan action, which takes
the current local plan and the current state of the robot to compute control inputs,
which can be sent to the underlying platform.

Sequencing of the actions is performed by a NavigationManager process, which
presents an external interface to the user or application. The software architecture
presented above is designed to maximize flexibility in implementing different solu-
tions to not only each component of the navigation system, but also provide flexi-
bility in how the external interface to navigation is presented.

For this experiment, we rely on the Search-Based Planning Library (SBPL) [23]
to perform global planning actions. We generate a custom set of motion primitives
based on our platform’s kinematics and use of 0.2 m and 0.3 m occupancy-grids
for the PackBot and Husky, respectively. We use the ARA* planner algorithm and
compute reverse plans so that computations can be reused as the robot drives for
fast re-planning actions. Re-planning allows the system to quickly correct its path
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in the event of errors in platform control or updates of the occupancy-grid map.
Feasible solutions to most initial planning queries are found in less than a second
with optimal solutions being found in a few seconds for most scenarios.

Local planning and control actions are currently provided by a single process,
which performs optimal trajectory generation over the space of time-varying control
inputs. Based on prior work in trajectory generation [20], we formulate a parame-
terization of the control input for a differential-drive platform such that a relatively
small number of variables, 4 in our current instantiation, provide an expressive de-
scription of the possible trajectories available to the robot over a short time horizon
of T = 3 s. An objective function is devised that performs a weighted minimization
of the error between the robot’s path and the desired global path coupled with some
curvature minimization terms to prevent overly aggressive trajectories. The final op-
timization problem, including bounds on the parameterization of the control input,
can be solved with a variety of algorithms implemented in the NLOPT library [21].
We are typically able to solve the trajectory generation optimization for a time hori-
zon of T = 3 s in 5−10 ms, allowing for a control frequency of 10 Hz. We are able
to directly execute the optimized time-varying control inputs, thus simultaneously
addressing the local planning and control problems.

4 Behaviors Supporting Autonomy

In this section, we describe how we build automata to sequence basic capabilities
of our multi-robot system in order to provide higher-level autonomous actions and
begin to address the data-collection mission described in Sec. 2. While the behaviors
described here are fairly simplistic, the underlying architecture allows for complex
collections of actions.

For the purposes of this work, all of our navigation behaviors build on the canon-
ical GotoRegion action in which the robot plans and drives to an arbitrary pose
within a defined region of the environment. The design decision to rely on region-
based navigation is based on the observation that navigation to a precise pose in
the environment leads to brittle solutions and that many data-collection problems
can in fact be satisfied with large degrees of flexibility. Take for example, the im-
age collection problem – there are many viewpoints from which to obtain a suitable
image of a target in R3. While the complexity of solving this viewpoint problem is
beyond the scope of this work, we believe many future data-collection problems can
be generalized to a desired region in the environment.

At their core, the behaviors generated by sequencing basic capabilities are meant
to aid the operator in tasking the robot when it must go outside the area of reliable
communication. Thus, we begin by defining the GuardedNavigation behavior to be
one where a goal region and safe region are defined. If execution of navigation to
the goal fails, the robot navigates back to the safe region where communication is
known to be reliable and the operator can continue to task the robot. Clearly, the
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GuardedNavigation behavior can be extended to support sequences of goal regions
such that a failure at any point in the sequence results in returning to the safe region.

With the addition of a simple Collect action that causes the robot to capture and
store an image, the operator can immediately begin to address the data-collection
mission from Sec. 2. By specifying a sequence of goal regions with accompanying
Collect actions, the operator instructs the robot to visit a number of sites at which
it will record high-resolution images. When it completes visiting the sequence of
goal regions or deems a leg of the task to be infeasible, the robot returns to the safe
region with its known reliable communication and transmits all of the images to the
operator. For now, the operator selects safe regions based on previous locations from
which the robot has successfully transmitted data.

5 Operator Interface

We rely on a simple graphical user interface (GUI) that enables a human operator to
task one or more robots. Our GUI is based on the RViz application that is included
in ROS for 3D rendering of sensor-data visualizations, tools for on-screen interac-
tions, and an extensible plugin architecture. In addition to software components that
allow for visualization of experiment-specific data, we developed tools for creating
and interacting with generic graph-embeddings on R2, which are used to specify
autonomous behaviors. It should be noted that our design and implementation of an
operator interface is driven by necessity in order to evaluate our system in appro-
priately relevant scenarios rather than as an example of best practices in terms of
human-robot interaction.

For this work, we used RViz to display a top-down orthographic view of satellite
imagery of our experimental facility, predefined GPS locations throughout the site,
the occupancy grid produced by the 3D mapping techniques described in Sec. 3.2,
and the current positions of all the robots during a mission. We rely on a generic
graph structure because it presents an intuitive representation for a variety of tasks
including patrol, exploration, and data-collection. For the purposes of this work, we
focus on the data-collection task and implicitly add edges to create linear topologies
along a sequence of nodes, which are defined by a disk with a center position and
radius. After the operator has annotated each node as safe or goal, we can easily
map a graph onto the behaviors described in Sec. 4. After defining a graph in RViz,
the system runs a verification to ensure that there are one or more goal regions and
only one safe region for each task. The mission definition is then communicated to
each robot where the resulting state machine is executed.

As each robot drives near the radio beacon marking the location of an injured VIP,
it will successfully receive transmissions and be able to record the signal strength.
Aggregating the signal-strength measurements from multiple robots in many loca-
tions across the environment, the operator can infer an estimate of the beacon loca-
tion from the maximum of the signal-strength field. This task is complicated by the
fact that radio-signal propagation is notoriously challenging to model in complex
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Fig. 4 An example of the user interface for a single data-collection task in a trial. The map is
overlaid on top of a satellite image with small pink disks representing the predefined GPS mission
nodes. The blue disks indicate that the robot has measured poor received signal strength data thus
far. The large orange and green disks are the goal and safe nodes, respectively, as set by the oper-
ator. Note, the red lines, white text, and yellow dotted lines have been manually added for clarity.

urban environments due to the phenomena of shadowing and multi-path. Further-
more, a high frequency beacon transmission may make complete reconstruction of
the signal-strength measurements at the operating station impractical. We employ
a segmentation-based approach for modeling that allows each robot to maintain ef-
ficient models of the received signal strength [33]. These compressed models can
be transmitted to the operator and visualized to allow adaptive exploration of the
environment with the goal of accurately localizing the VIP beacon.

6 Experimental Results

We conducted a series of experimental trials using the 175 x 175 m environment
pictured in Fig. 5 to evaluate the capability of our system to address missions defined
according to the problem statement in Sec. 2. Each experiment consisted of one or
two robotic platforms and mission operators tasked with the mission of capturing an
image at as many of the defined collection sites as possible within the time limit of
20 minutes. Experiments were designed such that the visitation of some collection
sites require traversal over a variety of terrain complexities and that robots must
travel outside of communication to motivate the use of autonomy. While collecting
images, each robot monitors the received signal strength from a radio beacon carried
by a mock VIP that is hidden in a static location for the duration of an experimental
trial. Localization of the VIP through received signal strength at the end of each
20 minute experiment is an auxiliary intelligence-gathering task that further guides
the exploration strategies employed by the mission operator.

While we envision a multi-robot system capable of autonomous traversal of the
complete mission with high degrees of reliability, i.e., suitable for tasking by an au-



Multi-Robot Systems in Disaster-Relief 11

3

4

5 7

8

9

10

11 12

25m

(a)

25m

(b)

Fig. 5 A satellite overview of the experimental facility overlaid with (a) experiment annotations
(green: operating center, purple: elevated base station antenna, orange: mission-specified sites, red:
VIP location for each trial) and (b) the aggregated paths driven by robots over all trials.

Trial Interventions Intervention
Distance (m)

Autonomous
Distance (m)

Percent of Mission
Autonomous

Sites
VIP

Localization
Error (m)

PackBot Husky PackBot Husky PackBot Husky PackBot Husky
3 17 4 14.5 2.6 101.2 167.1 87.5% 98.5% 4 60
4 20 7 51.6 21.9 386.4 336.4 84.1% 93.9% 13 15
5 22 9 34.2 77.9 175.5 494.4 83.7% 86.4% 9 3
7 5 1 9.9 0.5 162 169.9 94.2% 99.7% 7 0
8 10 6 25.6 1.7 334.3 378.4 92.9% 99.6% 15 2
9 8 16 26.1 15.2 403.1 371.4 93.9% 96.1% 17 45
10 13 5 61.5 0.1 454.4 426.2 88.1% 99.9% 15 53
11 24 0 48.1 0.0 446.3 342.7 90.3% 100.0% 12 0
12 13 11 107.0 125.7 605.9 326.0 85.0% 72.2% 17 8

Table 1 Results from each experimental trial.

tonomous agent that dynamically optimizes vehicle routes; this is beyond the scope
of state-of-the art algorithms when implemented in a realistic field environment. The
use of a safety operator not constrained by unreliable communication, i.e., follow-
ing the robot through the environment, who is able to intermittently intervene and
control the robot’s actions, drastically improves our ability to collect information on
the system performance across an entire mission execution. As such, evaluation of
the frequency and duration of these interventions serves as a primary benchmark in
terms of rating current autonomous capability.

We report on the results of 9 experimental trials with respect to the number of
sites visited and mock VIP localization accuracy in Table 1. The trajectories tra-
versed by both robots across all experiments are overlaid in Fig. 5(b) to depict the
breadth of experiments conducted. In most experimental trials, the robots drove
more than 90% of their total distance while autonomously executing Guarded-
Navigation-based sub-missions designed by the human operators to gather high-
resolution images and VIP signal strength data.
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Fig. 6 Experimental trials 11 (a) and 12 (b). Robot trajectories are shown for the PackBot (blue)
and Husky (red). The colormap indicates interpolated signal strength from the VIP beacon (red
indicates high signal strength). The communication reliability for trials 11 and 12 are depicted
in (c) and (d), respectively, where background colors indicate teleoperation (green), command
(yellow), and position-only (red) communication thresholds.

Figure 6 depicts the trajectories of both robots, sites visited, and measured VIP
signal strength for two specific examples of experimental trials. Note that in both of
these trials, in addition to visiting a number of sites and collecting images, signal-
strength data were collected that provide good estimates of the VIP beacon location.
Indeed, in trial 11 an image of the VIP was captured, providing the system operator
with direct evidence as to the VIP’s location and well-being.

Figures 6(c) and 6(d) depict the reliability of operator communication with each
robot during experiments as measured by analysis of the reception of periodic diag-
nostic packets sent by each robot to the operating center. For the purposes of these
experiments, we define three levels of communication – reliability exceeding 95%
allows for teleoperation, within 85% - 95% robot sub-missions can be commanded
and map data are updated after some delay, and below 85% provides no guaran-
tee on useful communication but robot position data may occasionally be available.
In all experimental trials, the use of sub-mission specifications using the Guarded-
Navigation capability allowed operators to task robots routinely into regions of the
environment with 85% - 95% reliable communication and, in several cases, enabled
collection of data in the 0% - 85% reliability regime.
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7 Conclusion

We have presented a series of field experiments that explore the capability of a
heterogeneous multi-robot system when applied to intelligence-gathering tasks in a
post-disaster scenario. Our results demonstrate autonomy-enabled operation when
communication reliability is not sufficient for teleoperation. Furthermore, by al-
lowing the operators to on-the-fly compose behaviors and define sub-missions that
respond to new conditions such as navigation failure, we enable safe operation com-
pletely outside the range of reliable communication.

It should be noted that there is a subtle increase in the reliability of our system
afforded by the operator’s ability to incorporate a priori knowledge, e.g., the road
network, and intuitive uncertainty management to specify region-based navigation
as seen in Fig. 4. Encoding the intelligence that goes into incorporating this a priori
knowledge will be key to the application of autonomous planners that schedule the
collection mission specifications for multiple robots operating in challenging envi-
ronments. The experiments presented here lay the ground work for future systems
that allow a minimal set of human operators to intelligently task large numbers of
robotic platforms for intelligence-gathering tasks in disaster-relief scenarios.
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