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Abstract This paper provides an image processing framework to assist in the in-
spection and, more generally, the data association of a natural environment, which
we demonstrate in a long-term lakeshore monitoring task with an autonomous sur-
face vessel. Our domain consists of 55 surveys of a 1 km lakeshore collected over
a year and a half. Our previous work introduced a framework in which images of
the same scene from different surveys are aligned using visual SLAM and SIFT
Flow. This paper: 1) addresses how to minimize a cover set of poses between two
surveys, which minimizes the number of expensive image alignments; 2) improves
alignment quality using a local search around each pose and by adding 3D informa-
tion from visual SLAM to bias the alignment; and 3) provides exhaustive results of
image alignment quality. Our improved framework finds significantly more precise
alignments in spite of performing image registration over an order of magnitude
fewer times. We show changes a human spotted between surveys that would have
otherwise gone unnoticed. We also demonstrate our approach is robust to ‘extreme’
variation in appearance.

1 Introduction

This paper presents an application of autonomous surface vessels (ASV) for long-
term observation of lakeshore environments. A growing number of robots are being
targeted for inspection tasks in natural environments, including applications in agri-
culture, surveillance, and environment monitoring. Yet, the variation of appearance
of outdoor environments significantly limits robots in tasks requiring data associa-
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Fig. 1 The registration of two images, which visual SLAM found to capture the same scene. For
each image, SIFT descriptors are computed at each pixel to form a SIFT image, which is down-
sampled into an image pyramid. An image mask representing the lakeshore (derived from the
3D information in the feature tracks of visual SLAM) is used to bias where the SIFT images are
aligned, which helps avoid aligning noise due to the sky or the water. The output flow aligns one of
the input images to the other, which enables quick change detection for manual inspection tasks.

tion, with many papers only addressing particular aspects of the variation (e.g., illu-
mination/shadows [4], night [19], and noise [8]). Scene structure can help provide
robustness to natural variation of appearance [16, 18]. Few papers have, however,
demonstrated robust data association across surveys of natural environments.

This paper presents a framework for achieving high resolution, pixel-level align-
ment between fortnightly surveys of a lakeshore. Our framework uses visual SLAM
(see e.g., [1, 21, 22]) to identify images of roughly the same scene from different
surveys and then it applies SIFT Flow [16] to precisely align them [6, 7]. Building
on our previous work, in this paper the visual coverage of a lakeshore is maximized
with a minimized number of poses (addressing the set cover problem), which min-
imizes the number of expensive image alignments. To improve the accuracy of an
image alignment at a particular pose along the lakeshore, a search for the best align-
ment is performed in its tight neighborhood of images. Image alignment accuracy
is further improved using the 3D landmark positions from visual SLAM to bias the
image registration process. Once images are precisely aligned, a human inspecting
them can easily spot if something changed. At this stage, given the difficulty of au-
tomatically processing natural scenes, we are assuming the inspection task is left to
a human, but we endeavor to make his/her task as efficient as possible.

To date, we have surveyed a lake a total of 55 times over 1.5 years, which repre-
sents a spatially large and a temporally long scale study using ASVs. We show our
framework enabled a human to detect changes that would have otherwise gone un-
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noticed. We also show our approach is robust to variation in appearance of the sky,
the water, changes in objects on a lakeshore, and the seasonal changes of plants.
Finally, we point out failure cases, which indicate directions for future work.

2 Related Work
The field of Simultaneous Localization and Mapping (SLAM) provides a foundation
for localizing a robot and mapping monitored spaces. Gaining the advantages of
SLAM in natural environments requires, however, a system made to handle three
particular challenges: 1) the large spatial scale; 2) the non-rigid environments (e.g.,
moving trees, changing water levels); and 3) the very high level of visual similarity
(e.g., branches and leaves of different trees may appear to be from the same one).
The variation of appearance over a long-term monitoring task further increases the
difficulty of data association in surveys of an outdoor environment.

Many different techniques have been proposed to solve data association for out-
door environments. Some approaches rely on point–based features such as SIFT
(e.g., [14, 1, 9]) for performing data association. Point–based feature matching is,
however, often not robust to common sources of variation (see e.g., [6]). In light of
this, some work has focused on directly using, or modifying, whole or parts of im-
ages. Neubert et al. [20] deals with seasonal changes by introducing a prediction step
in which whole images are modified to look more like the current season. McManus
et al. [18] utilize patches of images, called ‘scene signatures’, which are matched
using classifiers and capture information about the structure of each scene. In case a
particular location is stubborn to feature- and whole-image-based data association,
‘multiple experiences’ of the location can be accumulated until new observations
are associated well [2]. This paper performs data association using SIFT Flow [16],
an algorithm designed to find dense correspondences using whole images worth of
point-based features. It combines the accuracy of point-based feature matching with
the robustness of whole-image matching.

Traversing a lake while mapping the the location of a lakeshore is an essential
task of lakeshore monitoring, which some papers have already started to address.
Heidarsson and Sukhatme [10] and Subramanian et al. [23] map a lakeshore and the
locations of obstacles from the visual perspectives of their ASVs. Jain et al. [12] pro-
posed to use a drone for autonomously mapping riverine environments, which can
avoid debris in the water, yet fly below dense tree cover. In case a robot repeatedly
visits the same lakeshore, Hitz et al. [11] show that 3D laser scans of a shoreline can
be used to delineate some types of changes. Their system distinguished the dynamic
leaves from the static trunk of a willow tree in two different surveys collected in
the fall and spring. This paper combines iSAM2 [13] for scalable SLAM with SIFT
Flow for robust data association in a framework for long-term lakeshore monitoring.
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3 Experimental Setup
We used Clearpath’s Kingfisher ASV for our experiments. It is about 1 meter long
and 2/3 meters wide, with two pontoons, a water-tight compartment to house elec-
tronics, and an area on top for sensors and the battery. It is propelled by a water jet
in each of its pontoons and turns during power differentials. It can reach a top speed
of about 2 m/s, but we mostly operated it at lower speeds to maximize battery life,
which is about an hour with our current payload.

Our Kingfisher is equipped with a suite of exteroceptive and interoceptive sen-
sors. A 704x480 color pan-tilt camera captures images at 10 frames per second.
Beneath it sits a single scan line laser-range finder with a field of view of about 270
degrees. It is pointed just above the surface of the water and provides a distance
estimate for everything less than 20m away. The watertight compartment houses a
GPS, a compass, and an IMU.

The ASV was deployed on Symphony Lake in Metz, France, which is about 400
meters long and 200 meters wide with an 80 meter–wide island in the middle. The
nature of the lakeshore varied, with shrubs, trees, boulders, grass, sand, buildings,
birds, and people in the immediate surroundings. People mostly kept to the walking
trail and a bike path a few meters from the shore, and fishermen occasionally sat
along the shore.

We used a simple set of behaviors to autonomously steer the robot around the
perimeter of the lake and the island. As the boat moves at a constant velocity of about
0.4m/s, a local planner chooses among a set of state lattice motion primitives to keep
the boat 10m away from the lakeshore on its starboard side. With this configuration,
the robot is capable of performing an entire survey autonomously; however, we
occasionally took control using a remote control in order to avoid fishing lines,
debris, to swap batteries, etc.

We have regularly deployed the robot up to once per week since August 18,
2013. This paper analyzes data from 10 different surveys, which span seven months
of variation. All 10 were chosen because they consisted of one complete run around
the entire lakeshore, including the island. Each survey was performed in the daytime
on a weekday in sunny or cloudy weather, at various times of the day.

4 Methodology

Our framework aligns images between two surveys using a coarse-to-fine process
with four main components. First visual SLAM is used to localize the trajectory
of the ASV and map visual features of the shore. Second a minimum view set is
identified, which covers all the sections of lakeshore with similar viewpoints in both
surveys. Third, given two poses facing the same scene from two different surveys, a
process of image registration using SIFT Flow is performed for the best pixel-wise
alignment. In the last step images are presented to an end user in a flickering display.
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A single survey represents a collection of image sequences, measurements of the
camera pose, and other useful information about the robot’s movement. During a

survey, k, the robot acquires the tuple A k={T k
i ,I k

i ,Ĉ
k
i , ω̂

k
i }
|A k|
i=1 every 10th of a

second, where T is the current time, I is the image from the pan-tilt camera, Ĉ ∈
SE(3) is the estimated camera pose, and ω̂ is the estimated angular velocity of the
boat. The estimated camera pose is derived from the boat’s GPS position, the boat’s
compass heading, and the pan and tilt positions of the camera. The IMU provides
ω̂ . Each survey is down–sampled by a factor of five to reduce data redundancy and
speed up computation time.

Finding nearby images in two long surveys is possible using raw measurements
of the camera pose, but because these measurements are prone to noise that could
lead to trying to align images of two different scenes, we begin by using visual–
inertial SLAM to improve our estimates of the camera poses.

4.1 Visual SLAM
We used generic feature tracking for visual SLAM, which is based on detecting 300
Harris corner features and then tracking them using the pyramidal Lucas–Kanade
Optical Flow algorithm (from OpenCV) as the boat moves. We then apply a graph–
based SLAM approach for optimizing the camera poses and the visual feature lo-
cations. A factor graph is used to represent the set of measurements of the camera
poses and the landmark positions, and the different constraints between them. The
GTSAM bundle adjustment framework is applied to the factor graph to reduce the
error in the initial estimates of the positions [5]. See [7] for more details.

4.2 Selecting a Minimum View Set
To reduce the computational overhead of image alignment (Section 4.3) and to en-
able a manual comparison between two surveys (Section 4.4), we select a minimum
view set from among the roughly 50,000 images of each survey. A large set of
images in each survey is desirable for the optical flow step of visual SLAM and to
reduce motion blur. Yet, it means the images have a lot of redundancy, which is cum-
bersome for a survey comparison. Ideally, a person comparing two surveys would
only see a subset of these images, where each corresponds to a unique section of the
shore. This section describes how we find a minimal subset of images that covers as
much lakeshore as is seen in both surveys.

Another name for this is the “Set Cover Problem” (SCP) [3], which can be ex-
pressed as follows. Let S be the set of all the observable positions in a survey
of a lakeshore. Each camera pose, i, of the survey observes a subset Ii of these
shore points, where S =

⋃
i∈I Ii. The goal is to find a set of poses J for which

S =
⋃

j∈J I j and |J| is as small as possible. This Set Cover Problem is NP-Hard. It
can be approximated using linear programming or a simple greedy approach, which
gives sufficient performance for our application.
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Fig. 2 The recorded trajectory of the boat and the shore points it sees for two surveys. The shore
points seen from the red trajectory are displayed in red, those seen from the green trajectory are
green, and those seen from both are mauve. A closeup of the island is shown on the right.

Fig. 3 The cover set for the red survey from Fig. 2, which accounts for the estimated co-visibility
with the green survey. Black triangles indicate the visibility frustum of the selected images. A
closeup of the island is shown on the right.

The set of shore points that compose S is identified using the optimized poses
from visual SLAM. Because the robot is controlled to move at a constant distance,
d, from the shore, every point d±ε away in the camera frustum is considered part of
it (where d = 10m and ε = 1m). To get a discrete set of shore points, the shore map
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is rasterized into a grid, in which each non-zero cell represents the shore. An arc
centered on a pose is drawn with radius d and thickness ε with an angle consistent
with the camera intrinsic parameters. For each shore point in the grid, all the poses
from which it was seen are identified. An example set of shore points from two
different surveys and the points where they overlap are shown in Fig. 2.

The camera poses J that make up the minimal cover set must also satisfy some
practical constraints. Poses with an invalid camera configuration or with a high like-
lihood of motion blur are rejected. Poses from two different surveys without a sim-
ilar view of the lakeshore are also rejected. In this case, we estimate that two poses
have a similar view if their 3D positions are similar and both have similar intersec-
tions of the camera axis with the shore at the distance, d, from the boat. The distance
between the camera angles is expressed in this way to keep comparable values with
the distance between the 3D positions.

The Set Cover Problem is solved with the greedy algorithm shown in Algo-
rithm 1. The method provided the results illustrated in Fig. 3 in less than 30 seconds
(i.e., it’s tractable). Out of a survey with 50’000 images, roughly 200 are selected
for the cover set of the shore, which means over an order of magnitude fewer full
runs of image registration will be performed (compared to naively performing image
registration for every image in a down–sampled survey). Note that the set of images
does not view the entire shore; only all the shore points seen from both surveys with
similar views can be covered (about 80%).

Let L be the list of selected view points, initially empty;
while there are shore points to observe do

Select the valid shore point P which is the least observed;
Let V be a view point such that

V observes P and;
V observes the largest number of unobserved shore points;

Remove P and all shore points observed in V from the list of points to observe;
Append V to L;

end
return L

Algorithm 1: Greedy algorithm for maximizing the coverage of the shore with
the minimal number of poses.

4.3 Image Registration
Given two poses viewing approximately the same scene from two different surveys,
we next run image registration in a local search of several nearby images, and output
the image pair with the best alignment score we find (the registration process for a
single image pair is shown in Fig. 1). Image registration is performed using a modi-
fied version of the SIFT Flow scene alignment algorithm [16], which is designed for
matching images with significant amounts of variation between them. SIFT Flow
is named as such because a dense image of SIFT descriptors (see [17]) define the
matching pattern (the data terms of an MRF) to be optimized between two images.
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The algorithm is similar to optical flow in that each pixel is biased to have a similar
flow to nearby pixels (a smoothness criteria), and lower degrees of flow are favored
(regularization). For two images of approximately the same scene, the alignment
score is minimized when the flow lines up salient structures between them.

Because SIFT Flow’s cost function is designed to align the contents of a scene
indiscriminately, we add a bias in favor of aligning the lakeshore rather than the sky
or the water. A bias to decrease the influence of the sky and the water helps reduce
the noise they add to the image alignment process. The sky and the water may
compose a majority of each image to be aligned. Yet, they retain little consistent
salient structure between surveys. Salient structure can appear in the water if it is
reflective, which reduces the likelihood of a good alignment because the reflectivity
of the water changes between surveys. The varied appearance of the sky also affects
the alignment.

The bias to SIFT Flow’s cost function is derived from the 3D information from
visual SLAM. The location of the sky and the water in each image is approximately
determined using the estimated 3D locations of tracked landmarks. Although points
are mostly only tracked along the shore because most corner features occur there,
some are occasionally identified in the sky and the water, which this process essen-
tially filters out. Points with a negative elevation indicate a feature corresponds to
the water. Points far away indicate a feature corresponds to the sky. The rest of the
reprojected points are interpreted as part of the lakeshore. Given an image and the
valid 3D landmarks from visual SLAM, an image mask is created by drawing the
reprojected points on an image as a circle (an empirically determined radius, r= 28,
gave the best performance). For each pixel in the non-zero regions, the data terms
of SIFT Flow’s objective function are biased (by a factor of 1.5) in favor of aligning
the contents there compared to the other areas of the image.

Because belief propagation is used to find the best alignment, which can require a
significant amount of computation time to converge in large graphical models, SIFT
Flow uses image pyramids to speed up the process. An image pyramid progressively
halves the size of the two images for several layers (four in this paper). The search
for the best alignment proceeds in a search backwards down the image pyramid,
with the flow from each layer bootstrapping the optimization at the next higher
resolution. A search window defines the area to be considered for each pixel, and
reduces in size with each successive layer.

The final output alignment is chosen after a local search around the two candi-
date poses to find the two images that align best. SIFT Flow seldom finds a dense
correspondence between the first two coarsely aligned images we give it. The per-
spective difference and the optimization error between the two images is often dif-
ferent enough that an incorrect, high score alignment is found. A better, low score
alignment is usually possible between nearby images, which have a slightly dif-
ferent perspective. Therefore, the local search for the best dense correspondence is
performed on images at 0,± 1.5 , and± 3.0 second offsets from the two image can-
didates, for a total of 25 different alignments. To speed up this search, the alignment
is only performed for images at the highest level of the image pyramid.
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Fig. 4 Alignment quality for comparisons of 10 different surveys. All 10 were performed in 2014.

4.4 Survey Comparison
Although we endeavor to create a system for fully autonomous lakeshore monitor-
ing, including detecting changes autonomously, in this work change detection is left
to an end user. Our user interface is designed to exploit human skill at detecting
changes in flickering images of a scene. If an image pair from two different surveys
is aligned at the pixel level, changes flash on and off when the images are flickered
back and forth. If the precise alignment is not possible, a user can always revert to a
side-by-side comparison of images. This approach enables a human to perform fast
change detection (often requiring only a single flicker) for a survey comparison of a
large spatial environment consisting of hundreds of images.

5 Evaluation
5.1 General Alignment Quality
Our first experiment tests how well our framework can align lakeshore surveys, in
general, across large spans of time and in the midst of significant environment vari-
ation. The 10 different surveys using in this analysis are compared in consecutive
order for a total of nine different comparisons. The surveys span a total time of 210
days, with 7 days the shortest interval between compared surveys and 62 days the
longest. For each survey, each image from its cover set and the aligned image from
the following survey were flickered back-and-forth in a display. A human evaluated
the alignment quality according to three criteria: precise almost the entire image is
aligned well with little noise; coarse the images correspond to the same scene and
some objects may be precisely aligned; and misaligned the images correspond to
different scenes or it is hard to tell they come from the same scene.
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The results are shown in Fig. 4. The framework in this paper significantly outper-
forms that of our previous work in [7], which compared surveys from June 13 and
June 25 and achieved 52% precise alignments, 36% coarse alignments, and 12%
misalignments. In all the comparisons a significant number of precise alignments
are found, although some have more than others. The two cases with the fewest pre-
cise alignments involve a comparison with the July 11 survey, which had a much
higher water level. The upper half of many images in these two comparisons were
precisely aligned, yet because the perspective significantly changed, and the shore-
line appeared very different between surveys, SIFT Flow inaccurately extended the
shore downward to try to compensate for the large differences in appearance. In the
other comparisons, fewer precise alignments are due to sun glare and larger inter-
vals of time between surveys (increasing e.g., the seasonal variation of plants). For
every case, however, the few number of misalignments indicates an end user is al-
most always shown images of the same scene. Therefore, because the approach can
find good alignments, we next demonstrate its use for change detection.

5.2 Detected Changes
While labeling the alignment quality of each comparison, we also saved notable
changes between surveys to show our approach is useful for change detection. Six
interesting examples are shown in Fig. 5. Five were found in precisely aligned im-
ages; the removed treetop was identified in coarsely aligned images. Although the
difference between precise and coarse alignments is hard to spot in the figure, it is
readily apparent in a flickering display. This is also true for the detection of the cut
branch, which is nearly impossible to notice unless the images are precisely aligned
and flickered back and forth. Except for the case with people, none of the changes
were known of before this analysis. In fact, although we noticed a tree fell in the
water after some heavy rain (its branches are sticking out of the water in the Sky
and Water example of Fig. 6), we did not know where it came from. Because being
able to spot changes depends on image alignment quality, the next section evaluates
the robustness of our framework to the variation of appearance across surveys.

5.3 Robustness to Different Sources of Variation
Our framework can find many precise alignments in all the surveys only because
it is robust to many different, combined sources of variation of appearance. Before
two images are precisely aligned the appearance variation between them is often
‘extreme’. Six prototypical examples of robustness to a particular source of variation
are shown in Fig. 6. Perhaps the example with the most extreme amount of variation
is the one labeled ‘seasonal’. In addition to the foliage depletion captured in this
image pair, there is also different illumination, sky, water, shadows, and a globe
reflection. Maybe a precise alignment would not have been possible if there was
also sun glare. However, there are many cases in which precise alignments are not
found. The next section identifies common types of alignment errors.
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Removed Bush Cut Branch Fell Tree

Mowed Grass People Removed Treetop

Fig. 5 Six notable changes a human found while comparing the 10 different lakeshore surveys.

5.4 Alignment Errors
In some cases the alignment process adds significant noise to the images, which
requires reverting to the unregistered image pair for performing a comparison. Six
common ways the precise alignments failed are shown in Fig. 7. Image alignment
does not comply with the physics of structures in each warped image, which is ap-
parent in all the cases (and is an effect observed in other image processing work
as well, e.g., texture synthesis [15]). Because each pixel is potentially warped dif-
ferently than nearby pixels, the warp may be inconsistent across the image. Addi-
tionally, SIFT Flow may try to align to noise (e.g., sun glare) and changes (e.g., a
high-water level water), obfuscating the scene. Notwithstanding errors, most align-
ments are labeled ‘coarse’ because they are translated versions of the same scenes.
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Sky and Water Illumination Shadows

Seasonal Globe Spots Sun Glare

Fig. 6 Six different sources of noise and precisely aligned image pairs, which show that our ap-
proach is robust to ‘extreme’ sources of appearance variation.

6 Conclusion and Future Work
This paper demonstrated spatially and temporally scalable lakeshore monitoring us-
ing a framework for aligning surveys with visual SLAM and SIFT Flow. This paper
extends our framework by 1) identifying a cover set of poses; 2) searching for the
best alignment around each candidate pose; and 3) using the lakeshore’s 3D struc-
ture to bias the image registration process. We showed our framework can obtain a
significant number of precise alignments, which enabled a human to readily judge
changes between surveys. Our results demonstrate our framework is robust to the
‘extreme’ variation in appearance typical of lakeshore environments.

In future work we plan to improve upon our method’s robustness to the variation
of appearance between surveys. There are still many coarsely aligned image pairs,
which are in reach of becoming precisely aligned. One direction is to transition from
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Mirage Aligned To Noise Inconsistent Warp

Broken Structure Blurred Structure Overcompensated For Changes

Fig. 7 Six different alignment errors made during image registration.

a process based mostly on aligning visual features to one that also places significant
weight on aligning the 3D structure of the lakeshore. Another direction is to add an
image pre-processing step to remove noise before alignment. With these extensions,
finding precise alignments may become even more likely.
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[14] Jana Košecka. Detecting changes in images of street scenes. In Computer
Vision–ACCV 2012, volume 7727 of LNCS, pages 590–601. Springer, 2013.
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