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Abstract In this paper, an obstacle detection system for field applications is pre-
sented which relies on the output of a stereo vision camera. In a first step, it splits
the point cloud into cells which are analyzed in parallel. Here, features like density
and distribution of the points and the normal of a fitted plane are taken into account.
Finally, a neighborhood analysis clusters the obstacles and identifies additional ones
based on the terrain slope. Furthermore, additional properties can be easily derived
from the grid structure like a terrain traversability estimation or a dominant ground
plane. The experimental validation has been done on a modified tractor on the field,
with a test vehicle on the campus and within the forest.

1 Introduction

According to [10], the agricultural guidance research exploring the capabilities of
image sensors started in the mid-1980s in North America. With the full availability
of the NAVSTAR Global Positioning System (GPS) one decade later, researchers
also started to explore this new technology including its application for the agri-
cultural sector. This research on GPS-based guidance solutions led to successful
commercial products which are nowadays offered by almost all big manufacturers
of agricultural products or can be bought from component suppliers. The success of
this technology can be probably explained by its universal applicability. In contrast
to early camera-based and specialized solutions such as crop row guidance, the GPS
guidance is not restricted to individual field work or a special machine. The already
mentioned, commercial products for example, offer functions such as creating a lin-
ear trajectory defined by a waypoint and a direction. Furthermore, a complete track
can be recorded and by specification of the implement’s width, the system can cal-
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culate parallels to cover the whole field.
Here, a systemic disadvantage of GNSS-based (Global Navigation Satellite System)
guidance systems is visible, which alone is not solvable with the GNSS technology:
the calculated trajectories are not necessarily free of obstacles, which can lead to se-
rious accidents. Accidents are caused by fatigue or inattention of the driver who has
to monitor the Advanced Driver Assistance System (ADAS), where the two main
reasons can be identified. On one hand, the use of an automated steering system
can increase the monotony of work and thus cause fatigue—especially with large
acreage. On the other hand, agricultural manufacturers are constantly increasing the
working width of their machines and implements for economic reasons. For mod-
ern sprayers of 40 m width, it is difficult for the driver to estimate if the boom of the
implement can be safely moved past an obstacle, especially at higher speeds.
While GNSS-based products are already very successful on the agricultural market,
solutions using cameras or time-of-flight sensors are still a niche product for very
specialized tasks and still in the focus of research. In the research domain stereo
vision based obstacle detection for off-road and on-road is a large area, a recent
survey [2] summarizes the contributions of the last decade. A very popular method
is presented in [7] where obstacles are detected by analyzing the so called compat-
ibility of the 3D points. To speed up the process, the evaluation is performed in the
Disparity Space Image (DSI) where the truncated cones that have to be examined to
get the compatibility turn into triangles. The well cited method has been extended
and refined several times, e.g in [13] or in [4], where the DSI was splitted into dif-
ferent stripes with different resolutions to allow for parallelization and to reduce the
number of comparisons.

Another group of approaches can be identified which rely on a 2D grid or use a
Digital Elevation Map (DEM). One recent example [5] uses the grid representation
to fit B-spline surfaces into the reduced data to estimate the traversability of the
ground and presence of obstacles. For road application [9] demonstrates an approach
where a DEM and a density measurement of the points within a cell are used to
separate the road surface from obstacles.

The QUAD-AV project [12] addresses the obstacle detection problem for agri-
cultural vehicles by the investigation of different sensor technologies like stereo
vision, thermography, ladar and a microwave radar. Along with this project, several
interesting publications were made, e.g. a self-learning framework which uses ge-
ometric 3D data and color information of a trinocular camera [11] to classify the
ground. Both classifiers are updated during runtime to adapt the approach to chang-
ing environments. [8] describes the same framework for a multi-baseline camera but
only relies on the geometric classifier. Additionally, a so called Unevenness Point
Descriptor has been proposed [1] by the same research group which uses the normal
vector distribution of small surfaces which are fitted using PCA.

In this paper, an obstacle detection system for the field is presented which can
prevent collisions with obstacles while using a guidance system. For different rea-
sons which are explained in detail in Sec. 2 a colored stereo camera was chosen to
approach this task. As a first step after the data acquisition and pre-processing, the
3D points are sampled into a 2D grid. Initially, each grid cell is analyzed indepen-
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dently of its neighbors, which enables a strong parallelization of the method. Af-
terwards, the relations to the neighborhood are examined, the obstacles are grouped
and a terrain abstraction is generated.

2 System and Scenario Description

As described in the introduction the motivation to start the research on a field ob-
stacle detection system was driven by reported accidents with automated guidance
systems. Possible and probable obstacles in this scenario can be divided into 3 cat-
egories: natural, artificial or man-made and dynamic obstacles. The first class in-
cludes any kind of vegetation which is not traversable like bushes or trees and ad-
ditionally impassable terrain like ground with high slope or negative obstacles like
ditches and trenches. For the field scenario, the second category includes any kind of
poles (transmission, power), buildings, bridges and fences. The most difficult class
contains dynamic obstacles like persons, other agricultural equipment and animals.

The system described in this paper uses a Bumblebee2 stereo vision camera by
Point Grey. It has a focal length of 2.5 mm which results in a wide horizontal field of
view of 97 deg. Furthermore, the stereo setup has a fixed 12 cm baseline and includes
two Sony ICX204 1/3" color CCD sensors providing a maximum usable resolution
of 1024×768 pixels at 20 FPS. The decision to use a stereo camera instead of more
precise sensor like a 3D laser scanner was influenced by the following properties.
Firstly, the stereo vision system provides a very dense point cloud together with
additional color information. Additional advantages like the low price of camera
systems in mass production, the low energy consumption and the light weight makes
the technology interesting for commercial applications. Furthermore, it could be
pointed out during the tests, that the dust influence is lower than for a laser sensor
which makes the device interesting for agricultural purposes.

The camera system has been mounted at a height of 2.8 m above the ground
in front of the driver’s cabin of a modified John Deere 6R series tractor. It was
tilted downwards by about 10.5 deg to reduce the amount of sunlight falling into
the camera. For better understanding, the mounting position together with the used
Cartesian coordinate systems is shown in Fig. 1.

Fig. 1 Overview on the used
coordinate systems: SCS:
sensor, RCS: robot/tractor and
the position of the camera
which was mounted in front
of the cabin below the roof.

zSCS

ySCS

xRCS

zRCS
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3 Implementation and Algorithms

3.1 Data Acquisition and Pre-Processing

To grab the images from the camera, the libdc1394 library is employed. For the
undistortion and rectification step, the calibration offered by Point Grey is used.
Therefore, functions of the Triclops SDK1 together with the calibration parameters
stored on the sensor were used to generate lookup-tables for each camera in an of-
fline process which map the pixels of the original image to the target. By applying
these pre-computed tables, undistortion, rectification, cropping and scaling to a de-
sired resolution can be done in one step. In addition, this enables the usage of the
calibration together with other libraries, e.g. OpenCV[3] remap functionality which
is applied in this case. The rectified images are then processed by a block matching
algorithm which uses the sum of absolute differences as a metric to compute the
disparity map. Neither the matching algorithm nor the metric are known to produce
the best possible results. But its simplicity and its efficiency makes the algorithm
suitable for embedded or GPU implementations. Knowing the disparity map, 3D
points according to the camera reference frame (xCCS,ySCS,zSCS) (see Fig. 1) can be
calculated. In this step, the properties of the stereo vision system like the principal
point, the focal length measured in pixels and the baseline is needed. All parameters
are stored on the camera and can be scaled to the selected resolution. As a last step
of the point cloud generation, all points are projected into the robot coordinate sys-
tem (xRCS,yRCS,zRCS). This system is originated on the ground below the kinematic
center, with the xRCS-axis pointing in the driving direction, zRCS directed into the
sky. The transformation requires the knowledge of the camera position in relation
to this coordinate system. Please note that neither a statistical filtering nor a den-
sity reduction, e.g. a voxel grid filter, has been applied as it is often done in other
approaches after this step.

3.2 Grid Generation and Pre-Processing

The point cloud P = {p1, . . . , pn} in the robot coordinate system is splitted into a
2D grid lying in the horizontal (xRCS,yRCS) plane. Each cell C j has a parametrized
dimension of w× h. Due to the characteristics of the matching algorithm which
produces a more dense cloud in the y-direction than in the x-direction, the width w
and the height h could be set to different values. Additionally, the extend of the grid
is limited in two directions [0,xmax]× [− ymax

2 , ymax
2 ] as the output of a stereo vision

system is only useful in a certain range, which depends on the baseline. The target
cell index (cx,cy) of a point pi ∈ P, pi = (pix , piy , piz) can be calculated as:

1 http://www.ptgrey.com/triclops
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cx =
⌊ pix

w

⌋
(1)

cy =
⌊ piy

h
+

ymax

2h

⌋
(2)

To avoid errors in addressing the cells, the maximum grid dimensions should be
defined as xmax = a ·w and ymax = 2 ·b ·h where a,b ∈ N∗. After this step, each cell
C j contains a subset Pj of the original point cloud P. Due to the defined boundaries
of the grid, the following relation applies

P =

 xmax
w · ymax

h⋃
j=1

Pj

∪Q (3)

where Q contains all points which do not belong to the grid and are not further
analyzed. In a first parallelized step, the points p( j)

i ∈ Pj of each cell are sorted
ascending according their p( j)

iz -coordinate to prepare the further steps which results

into Pj = {p( j)
i } | i = 1, . . . ,n( j); p( j)

iz ≤ p( j)
(i+1)z

.
This is followed by a sequential extraction of the z-coordinate of the lowest point
p( j)

1 of each non-empty cell. Combined with the cell’s 2D center (m( j)
x ,m( j)

y ), this
set of lowest points is used to define an initial dominant ground plane by applying a
least-squares fitting algorithm (see Sec. 3.3 and Eq. 17 for the details). Afterwards,
the shortest distance between the plane and the points (m( j)

x ,m( j)
y , p( j)

1z
) is tested.

If the distance is larger than a threshold tg or in the case of empty cells, the z-
value is extracted from the fitted plane. Furthermore, all these height values—either
originated from p( j)

1 or determined using the plane—are saved in a matrix whose
number of rows and columns is equal to the grid. This matrix is then smoothed
using a Gaussian blurring (kernel size 5×5) to reduce the influences of cells which
do not provide ground points as they are containing large obstacles. Thereafter, the
determined height values are stored in the corresponding grid cells as a ground guess
value g j. These height values are used to be able to separate overhangs even if no
ground points are available, for instance in “obstacle shadows”.

3.3 Cell Evaluation

One advantage of the presented approach is—as already mentioned—the ability to
parallelize the following steps, as each subset Pj is firstly evaluated individually
without incorporating the neighborhood. As a first step, the number of points as-
signed to a cell C j is calculated, as it has to be above a defined threshold |Pj| ≥ ρ

to get meaningful results. If this density of points is too low, the cell is marked as
non-evaluable. Based on the vehicle’s properties shown in Table 1, the follow-
ing derived quantities can be calculated:
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d =

√
(cxw+

w
2
)2 +(cyh− ymax

2
+

h
2
)2 (4)

α = max(vβ ,d · vα) (5)

zmax = max(vg,d · sin(α)) (6)

Afterwards, a decision tree is used to test if a cell contains an obstacle. If one
of the rules 7, 9 or 14-16 applies, the label obstacle is assigned to the cell and
the evaluation is terminated. In the other case, the next test is executed. The first
rule (Eq. 7) checks if the lowest measured sample p1z (from this point on, the super-
script ( j) is omitted to improve the readability) is above the position which could
be reached with the given maximum slope vα . Similarly, the highest measured point
pnz has to be higher than the lowest reachable position.

p1z > zmax∨ pnz <−zmax (7)

In forestry scenarios it often happens that overhanging parts are detected. In com-
bination with missing ground points, Eq. 7 would lead to many false classifications.
Thus, the distance between p1z and the ground guess g j is evaluated and the cell
label is fixed to non-evaluable if p1z −g j > vh.

For cells which include ground as well as overhanging objects, the space between
these clusters has to be examined to see if the robot can safely pass this cell. To
handle this situation, the range of the z-coordinates is tested:

(pnz − p1z)> vh (8)

In the case that the range is larger than vh, a k-means clustering algorithm is applied
to the point cloud subset Pj to see if the points can be separated into ground and
overhang. The number of clusters k is set to 2. Additionally, it is ensured that the
center of first cluster Pg = {pi} | i = 1, . . . ,k; piz ≤ p(i+1)z has a lower z-value than
the center of the second cluster Po = {pi} | i = (k+ 1), . . . ,n; piz ≤ p(i+1)z which
is expected to contain the points of the overhang. If both clusters Pg and Po fulfill
a density criterion, the distance between the highest point of the ground cluster Pg
and the lowest of the overhang cluster is evaluated:

p(k+1)z − pkz < vh (9)

Here, the ground guess value g j calculated during the pre-processing is used
instead of pkz , if the density of Pg is too low. Furthermore, the cell label is set to
non-evaluable if both densities are below a threshold or g j has been applied to
Eq. 9 which was evaluated to false. If the space is insufficient (Eq. 9 is true), the cell
is rated as an obstacle in all other cases.

At this point, the remaining point cloud is either still the original one (Pj) or
the overhangs have been successfully separated and only the portion Pg has to be
further analyzed. To improve readability, the next steps are just explained for Pj,
nevertheless the same tests will be executed on Pg if the overhang separation was
conducted.
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To get rid of outliers and matching errors of the stereo correspondence module,
a smoothing filter as well as statistical outlier filter is applied to a copy of Pj to not
lose the original measurements.

piz :=
piz +µz

2
, µz =

1
n

n

∑
i=1

piz (10)

The output of the smoothing filter shown in Eq. 10 is used as the input for the
statistical filter shown in 13. Therefore, the indexes q1 of the first quartile Q1 (also
known as 25th percentile) and q3 of the third quartile Q3 (75th percentile) are calcu-
lated. Using these indexes, the following boundaries are defined, where (pq3z− pq1z)
is known as the interquartile range which contains 50% of the data.

fmin = pq1z −1.5 · (pq3z − pq1z) (11)

fmax = pq3z +1.5 · (pq3z − pq1z) (12)

Pf = {pi} | i = 0, . . . ,n; l ≤ i≤ m; fmin ≤ plz ; pmz ≤ fmax; piz ≤ p(i+1)z (13)

The resulting filtered point cloud Pf is tested according the following criteria. If
one of the conditions apply, the obstacle-label is assigned to the cell.

|Pf |< ρ (14)
pmz − plz > vg (15)

pmz > zmax (16)

Here, the first rule is again a density check, the second rule tests if the cell range is
acceptable and the third rule if the cell contains points which are above a reachable
height.

The last and maybe strongest criterion evaluates properties of a plane fitted to
the point cloud Pf . Therefore, a least squares fitting algorithm which minimizes
the distance between the plane and the z-components of the points is used to
find a plane defined as z = ax+ by+ c. For determination, the error E(a,b,c) =
∑

m
i=l [(apix +bpiy + c)− piz ]

2 needs to be minimized. According to [6], the follow-
ing equation system 17 solves the problem, as the function E(a,b,c) has its vertex
when the gradient is zero. ∑

m
i=l p2

ix ∑
m
i=l pix piy ∑

m
i=l pix

∑
m
i=l pix piy ∑

m
i=l p2

iy ∑
m
i=l piy

∑
m
i=l pix ∑

m
i=l piy ∑

m
i=l 1

 a
b
c

=

∑
m
i=l pix piz

∑
m
i=l piy piz
∑

m
i=l piz

 (17)

After the plane is determined, the slope γ is calculated as the enclosed angle
between the normal of the plane and the z-axis: If the slope is above the maximum
slope α (see Eq. 5) or above the desired attitude vβ the cell is interpreted as an obsta-
cle. This decision can be overwritten and the cell is marked as non-evaluable,
if the range pmz −g j is below the ground clearance value vg.
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Table 1: Vehicle properties used to evaluate a grid cell

Symbol Property

vh Height of the vehicle
vα Maximum slope which the vehicle can handle between two cells
vβ Maximum desired attitude (roll and pitch)
vg Ground clearance of the vehicle

3.4 Neighborhood Evaluation

At this stage, only the cells have been evaluated without taking their neighborhood
into account. This could lead to some misclassifications and has to be corrected in
the following steps. As the methods are working on the grid structure, the neighbor-
ing cells need to be known for each cell C j. Figure 2 shows the naming convention
which is used to describe the evaluation. The full neighborhood contains 8 cells
N(8)(C j) = {Ni(C j)}| i = 1, . . . ,8 while a reduced neighborhood N(4)(C j)—shown
in red—only contains the neighboring cells with even indexes. Some extra attention
is required at the borders of the grid as these cells do not have the full number of
neighbors.

First, a function iterates over the whole grid and does the following analysis for
each grid cell C j which has not been labeled as obstacle or non-evaluable as
described in Sec. 3.3. For each neighbor Ni(C j) ∈ N(8)(C j) which has been marked
as potentially drivable in the cell analysis as well as for the center C j, the mean
height above the horizontal plane µz(C j) is calculated based on the distance of the
cell’s center (cxw+ w

2 )+ (cyh− ymax
2 + h

2 ) to the fitted plane. Afterwards, the slope
between the center and each adjoining cell Ni is determined as follows

γi(C j,Ni(C j)) = atan2 [|µz(C j)−µz(Ni(C j))|,dist(C j,Ni(C j))] (18)

where dist(C j,Ni(C j)) returns the spatial distance between two cell centers in the
2D x− y-plane. In addition, a counter is incremented for each slope measurement
γi(C j,Ni(C j)) which is above the threshold vα . If this counter is smaller than 4
after the evaluation, the cell is labeled as obstacle otherwise the cell is labeled
as drivable. Some special cases have to be handled at the borders of the grid,
in areas where no data points are available or if the label non-evaluable was
assigned.

Finally, a post-processing step is executed to remove scattered drivable cells
which are surrounded by obstacles. Therefore, a drivable cell close to the origin
of the RCS is determined and used as a seed S. Furthermore, the cell is added to
a list of non-isolated cells and its N(4)(S) neighbors are identified. For each of the
neighbors Ni(S) ∈ N(4)(S) the assigned label is inspected. If it is not on the list of
non-isolated cells and has been marked as drivable or non-evaluable it is
used as a new seed and the method is recursively called.
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Fig. 2 Naming convention
and traversing scheme of the
grid cell neighborhood

(cx ,cy)(cx ,cy +1)

(cx −1,cy +1)

N1

N2

(cx +1,cy +1)

N3
(cx +1,cy)

N4
(cx +1,cy −1)

N5

(cx ,cy −1)

N6

(cx −1,cy −1)

N7
(cx −1,cy)

N8

C j

3.5 Derived Properties

Based on the cell and the neighborhood evaluation different properties and views can
be derived. For the presented application, the segmented obstacle view is the most
important information. To generate this information, all cells tagged as obstacle
are collected and added to an obstacle list. As long as this list contains elements,
the following steps are repeated. The first element of the list generates a new obsta-
cle cluster and is added to an auxiliary stack. Until the stack is empty, the N(4)(C j)
neighborhood of the top of the stack is analyzed and if it contains cells which are
also on the obstacle list, they are added to the cluster as well as to an auxiliary stack
and removed from the obstacle list. The process generates a collection of clusters
which are enriched with some attributes like the maximum and minimum sample
height within the cluster and the total number of 3D samples of the cluster. Further-
more, a polygon is calculated which describes the outer hull of the obstacle.

For the purpose of classification, the 3D points and the RGB-data of all obstacle
clusters can be combined and accessed. This is possible since each cell of the grid
still contains the original piece of the point cloud which was assigned to the cell.
Besides the obstacle clusters, the evaluation results can also be used to divide the
original point cloud into 3 separate clouds. The first one contains all points which
belong to the traversable ground. The second one represents the measurements la-
beled as obstacles and the last one the overhanging objects which are higher than
the vehicle. An example of a partitioned point cloud is shown in Fig. 3b. Here, the
green points are showing all 3D points which belong to the ground. The red points
are classified as an obstacle. In Figure 3a the point cloud is shown as an overlay on
the left image of a grayscale stereo camera.

For some applications, like an inverse perspective mapping which can be used to
extract waysides or road markings, a dominant ground plane is a valuable informa-
tion. Using the presented grid based structure, such a plane can be easily extracted.
In a first step, the 2D cell center points of all drivable cells are collected. After-
wards, the medium cell heights of the same cells are determined using the approach
depicted in Sec. 3.4 incorporating the distance to the planes fitted to the cells. Fi-
nally, the generated 3D points are used as an input for a least-squares plane fitting
as described at the end of Sec. 3.3 or by applying a RANSAC plane fitting.
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In addition to a binary obstacle or not-obstacle view, also the shape of the terrain
is interesting as some areas might be traversable but with an increased effort or
unwanted side effects like reduced wheel grip. Here, an abstract terrain model can
be helpful for path planning or implement guidance. Using the grid representation,
this shape of the ground can again be extracted using the small planes fitted to each
cell. The algorithm to create a reduced version of a Digital Elevation Map (DEM)
starts at a cell close to the RCS’s origin which has not been labeled as obstacle
or non-evaluable (it has a reasonable height information). This starting cell is
added to an auxiliary stack. In this case, a stack is required as the used grid size blasts
the maximum recursion depth. While the stack is not empty, the following steps are
repeated: 1. The top element is removed. 2. The N(8)(C j)-neighbors are calculated.
3. If the cell can provide a height value, the value is added to the DEM together
with the 2D coordinates of the cell center. If it has been labeled as obstacle or
non-evaluable the height is averaged using the neighboring cells. If they cannot
provide valuable data, the last height value is used. 4. All neighbors which are not
yet represented in the DEM are added to the stack. The final elevation map is then
generated by triangulating the determined points.

Figure 3c shows the result of the traversability analysis. The hilly ground on the
left side of the image has been classified as drivable ground as shown in green on
picture 3a based of the capabilities of the vehicle. Nevertheless, the height map in
3c shows that the slope is quite high and if it is not required to go there, this area
should be avoided.

(a) (b) (c)

Fig. 3: Properties derived from the grid based evaluation: (a) image of the left
camera showing a winter scenario of a hill and the wall of a bridge. Additionally,
the classification results are overlayed (green: drivable, red: obstacle). (b) clustered
point cloud: points belonging to the ground are shown in green, obstacle points are
red, Terrain classification: the triangulated surface is color coded based on height
above the x-y-plane.
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4 Experiments and Results

To test and evaluate the presented obstacle detection approach, different scenarios
have been recorded on the field, the campus of the University of Kaiserslautern,
and the forest connected to it. For the field scenarios a John Deere 6R tractor was
equipped with the stereo camera system described in Sec. 2, a differential GPS-
system, an inertial measurement unit and other time-of-flight sensors to evaluate
the data quality of the stereo camera. The first collection of datasets was recorded
on grassland (see Fig. 4a) and on fields with different kinds and sizes of grass and
weeds in summer 2014. With varying speeds from 1-15 km/h different obstacle types
and open field scenarios have been captured during different daytimes. In a second
test, data has been recorded while using a stubble cultivator on a harvested grain

(a) Trees and a mound on grassland

(b) A power pole on a harvested grain field

Fig. 4: Two typical obstacle situations captured on the field. The left images depict
the results of the grid based evaluation showing the fitted planes—the color scale
depends on the height above the x-y-plane—and the identified obstacles as red boxes
together with the colored 3D points. Right: resulting classification projected back to
the SCS and visualized as an overlay on the left camera image. Green pixels show
the drivable ground, obstacles are shown with red pixels.



12 Patrick Fleischmann and Karsten Berns

field. This field contained several obstacles like a forest on one side, some houses at
the opposite border, 2 power poles within the field and a ditch to a street nearby. Both
datasets with 96,372 stereo image pairs in total were used to evaluate the obstacle
detection system offline before deploying it to a real machine.

Both Figures 4a and 4b show some typical classification results which were cre-
ated in the offline analysis. In all of these scenarios a cell size of 0.5 m × 0.5 m
was used to get rid of some small weeds sticking out of the ground. The grid di-
mensions where limited to 16 m × 16 m, as the point cloud density was too low
for higher distances and the noise dramatically increased in farther regions. The 3D
points belonging to the ground are summarized by the fitted planes which are shown
in different colors depending on their distance to the horizontal plane. Cells which
are classified as obstacles are highlighted with a red transparent box. Additionally,
the individual 3D points are shown along with their color. For better understanding,
the right part shows the left image of the stereo camera. The obstacle points have
been back-projected to the image coordinates and are overlayed as a red mask for
visualization. The hole in the center of the grid arises from the engine hood which
was removed from the point cloud before handing the data to the obstacle detection
module. Images 4a and 4b depict scenarios where the tractor was manually driven.
The first figure shows the system’s response to an apple tree and a small mound, the
second visualization demonstrates the detection results of a large power pole which
is blocking the path calculated by the GPS guidance system.

To quantitatively evaluate the detection performance, 100 randomly selected
stereo pairs have been extracted from the recorded dataset described above. The
ground-truth (obstacle or drivable ground) was manually set for each grid cell for all
items of the selection. Using the parameters vh = 3.2 m, vα = 10 deg and vg = 0.5 m
suitable for the tractor, it resulted in an average precision of 81.76%, a recall of
93.16% and an accuracy of 99.41%. The determined false positive rate is 0.45%. It
should be mentioned, that the example images contained much more drivable cells
(53941) than obstacles (1169) as the data was collected on real fields. Furthermore, it
could be seen that most of the false positive detections were caused by weeds stick-
ing out of the ground or by cells connected to real obstacles which appear larger in
the stereo cloud. Additionally, most of the false positives which were identified by
the slope estimation γ were positioned at the border of the camera’s field of view
were the grid cells are only partially filled with 3D points.

To demonstrate the applicability of the approach, the obstacle detection was in-
tegrated into a guidance system and implemented on a modified tractor with elec-
tronically controllable steering and velocity. Here, the output of the detection was
passed to a map where the results of multiple frames were combined to increase
the robustness and to get rid of single misclassified cells. If an obstacle intersected
the space requirements along the calculated GPS-path, the tractor was stopped by
decreasing the speed to zero. The prototype was used to demonstrate an emergency
stop in front of a person, a tree and a small pole while driving tracks on the field.

In addition, the methodology has also been tested at the campus and inside the
Palatinate Forest as the number of obstacles and overhangs is higher than in the field
scenarios and the detection has to be more precise. Two examples are given in Fig.
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5a and 5b. For both sites the grid cell size was reduced to 0.25 m × 0.25 m for a
better segmentation of obstacles. Additionally, the ground clearance was reduced to
0.2 m to fit to the capabilities of the testing vehicle, a John Deere Gator XUV 855D.
It can been seen in both examples that the drivable ground is correctly classified
by the system as well as the obstacles within the detection range of the camera.
For the forest capture, a Bumblebee XB3 grayscale camera was used instead of the
Bumblebee2. Due to the larger baseline of 24 cm also the x dimension of the grid
could be increased to 35 m. For both examples the same visualization scheme as
described for the field scenarios applies.

(a) Campus scenario

(b) Forest scenario

Fig. 5: Obstacle detection applied to a campus and a forest scenario using a cell size
of 0.25 m × 0.25 m. For the tests, the camera was mounted on a John Deere Gator
XUV 855D at a height of 2 m above the ground. For the forest scenario, a grayscale
Bumblebee XB3 camera was used instead of the Bumblebee2 model employed for
the other experiments. Both visualizations use the same color coding as described
in the previous figure.
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5 Summary and Future Work

The obstacle detection system presented in this paper was successfully used to de-
tect severe obstacles on the field, the campus and inside the forest. Splitting the
detection into a grid cell and a neighborhood based part allows for parallelization of
the detection process which makes the approach real-time capable. Furthermore, the
results are more robust than a point-wise analysis as small outliers have a reduced
influence on the evaluation.
The collected data showed that further research is needed to distinguish between soft
weeds sticking out of the ground and dangerous solid objects which is challenging
based on the geometric data extracted by the stereo system. Thus, the system is cur-
rently extended to extract the image patches representing the obstacles found by the
geometric evaluation. Afterwards, the obstacle is analyzed in the image domain to
further classify the obstruction and neglect it in case of weeds.

References

1. Bellone, M., Reina, G., Giannoccaro, N.I., Spedicato, L.: 3d traversability awareness for rough
terrain mobile robots. Sensor Review 34(2), 220–232 (2014)

2. Bernini, N., Bertozzi, M., Castangia, L., Patander, M., Sabbatelli, M.: Real-time obstacle de-
tection using stereo vision for autonomous ground vehicles: A survey. In: ITSC, 2014 IEEE
17th Int. Conf. on, pp. 873–878. IEEE (2014)

3. Bradski, G., Kaehler, A.: Learning OpenCV: Computer Vision with the OpenCV Library.
O’Reilly Media Inc. (2008)

4. Broggi, A., Buzzoni, M., Felisa, M., Zani, P.: Stereo obstacle detection in challenging envi-
ronments: the viac experience. In: IROS, 2011 IEEE/RSJ Int. Conf. on, pp. 1599–1604. IEEE
(2011)

5. Broggi, A., Cardarelli, E., Cattani, S., Sabbatelli, M.: Terrain mapping for off-road au-
tonomous ground vehicles using rational b-spline surfaces and stereo vision. In: Intelligent
Vehicles Symposium (IV), 2013 IEEE, pp. 648–653. IEEE (2013)

6. Eberly, D.: Least squares fitting of data. Chapel Hill, NC: Magic Software (2015)
7. Manduchi, R., Castano, A., Talukder, A., Matthies, L.: Obstacle detection and terrain classifi-

cation for autonomous off-road navigation. Autonomous robots 18(1), 81–102 (2005)
8. Milella, A., Reina, G.: 3d reconstruction and classification of natural environments by an

autonomous vehicle using multi-baseline stereo. Intelligent Service Robotics 7(2), 79–92
(2014)

9. Oniga, F., Nedevschi, S.: Processing dense stereo data using elevation maps: Road surface,
traffic isle, and obstacle detection. Vehicular Technology, IEEE Transactions on 59(3), 1172–
1182 (2010)

10. Reid, J.F., Zhang, Q., Noguchi, N., Dickson, M.: Agricultural automatic guidance research in
north america. Computers and electronics in agriculture 25(1), 155–167 (2000)

11. Reina, G., Milella, A.: Towards autonomous agriculture: Automatic ground detection using
trinocular stereovision. Sensors 12(9), 12,405–12,423 (2012)

12. Rouveure, R., Nielsen, M., Petersen, A., Reina, G., Foglia, M., Worst, R., Seyed-Sadri, S.,
Blas, M.R., Faure, P., Milella, A., et al.: The quad-av project: multi-sensory approach for ob-
stacle detection in agricultural autonomous robotics. In: Int. Conf. of Agricultural Engineering
CIGR-Ageng, pp. 8–12 (2012)

13. Santana, P., Guedes, M., Correia, L., Barata, J.: A saliency-based solution for robust off-road
obstacle detection. In: ICRA, 2010 IEEE Int. Conf. on, pp. 3096–3101. IEEE (2010)


