Non-Field-of-View Acoustic Target Estimation
in Complex Indoor Environment
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Abstract This paper presents a new approach which acoustically localizes a mo-
bile target outside the Field-of-View (FOV), or the Non-Field-of-View (NFOV), of
an optical sensor, and its implementation to complex indoor environments. In this
approach, microphones are fixed sparsely in the indoor environment of concern.
In a prior process, the Interaural Level Difference (ILD) of observations acquired
by each set of two microphones is derived for different sound target positions and
stored as an acoustic cue. When a new sound is observed in the environment, a joint
acoustic observation likelihood is derived by fusing likelihoods computed from the
correlation of the ILD of the new observation to the stored acoustic cues. The lo-
cation of the NFOV target is finally estimated within the recursive Bayesian esti-
mation framework. After the experimental parametric studies, the potential of the
proposed approach for practical implementation has been demonstrated by the suc-
cessful tracking of an elderly person needing health care service in a home environ-
ment.

1 Introduction

Target localization and tracking, or mobile target estimation, in indoor environments
has been a research challenge over several decades due to the existence of a variety
of applications in addition to the significance and the difficulty of each applica-
tion. It is significant in applications such as home security, home health care and
urban search-and-rescue but its usefulness is limited by the complexity of indoor
structures [13, 7]. Complex indoor structures make estimation problems challeng-
ing as they can introduce large unobservable regions when an optical sensor such
as a camera is deployed. This is because optical sensors’ FOV is determined by
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the Line-of-Sight (LOS) and range of the optical sensor, which could be small in
highly constrained environments. In addition, there are environments such as per-
sonal homes where privacy concerns do not allow for the use of cameras. These
limitations on optical sensors give rise to need for NFOV mobile target estimation.

Recent work for NFOV mobile target estimation has been tackled in three dif-
ferent ways. The first approach deploys target mounted radio-frequency (RF) trans-
mitters and fixed receivers in the environment. In one arrangement, RF receivers
form a wireless sensor network (WSN), and numerical techniques are used to lo-
calize a NFOV target by processing information of received signals such as signal
intensity [3, 6]. An improved arrangement with minimal infrastructure uses “finger-
prints” [1, 10]. There is a unique fingerprint at each location in a static environment.
A target can thus be localized by feature-matching the fingerprints. Whilst this ar-
rangement can achieve higher accuracy, the critical problem inherent in the RF based
approach is its applicability only to near-NFOV target estimation [13, 15].

In the second approach, acoustic sensors are used for target estimation. Since
sound signals are reflected by structures, it is possible to localize a NFOV tar-
get unlike the RF based approach provided that the sound signals contain infor-
mation on the target location. The most common approach utilizes the Time-of-
Arrival (TOA)/Time-Difference-of-Arrival (TDOA) information of acoustic sig-
nals [2, 18, 11]. The existing acoustic techniques, however, have not achieved true
NFOV target estimation to the best of our knowledge. The majority of sound lo-
calization challenges have been focused on the direction of sound rather than its
position due to complexity of sound wave propagation [17, 16].

The final approach enhances NFOV target estimation by including a sensor
with a limited FOV, such as an optical sensor, by applying a numerical technique.
Mauler [12] stated the NFOV estimation problem mathematically, and Furukawa, et
al. [4, 5] developed a generalized numerical solution. In this technique, the event of
“no detection” is converted into an observation likelihood and utilized to positively
update probabilistic belief on the target. This belief is dynamically maintained by
the recursive Bayesian estimation (RBE). The technique, however, has been found
to fail in target estimation unless the target is re-discovered within a short period
after being lost. Kumon, et al. [9], incorporated an acoustic sensor to maintain be-
lief with no optical detection more reliably. Nevertheless, the technique performed
poorly unless the target re-entered the optical FOV since the acoustic sensing is only
conducted in an assistive capacity.

This paper presents a new acoustic approach to estimate a NFOV mobile tar-
get, and its application and implementation to complex indoor environments. In the
approach, microphones are sparsely installed in an indoor environment. In a prior
process to the estimation, the ILD of observations acquired by combination of stereo
microphone pairs is derived for different target positions and stored as the “finger-
prints”, or acoustic cues. This a priori data collection process is accelerated by a
speaker localization device. With the acquisition of a new sound from the target, an
acoustic observation likelihood is computed for dominant pair of microphones by
quantifying the correlation of the ILD of the new observation to the stored ILDs.
The joint likelihood is then created by fusing the acoustic observation likelihoods,
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and the NFOV target is estimated by recursively updating the belief within the RBE
framework using the joint likelihood.

2 Recursive Bayesian Estimation

Consider the motion of a target ¢, which is discretely given by
X;H—l = ft (X;ﬁu}smw}sc) (1)

where x|, € X" is the target state at time step k, uj, € U is the set of control inputs,
and wi € W' is the “system noise”. For simplicity, the target state describes the
two-dimensional position.

FOV and NFOV are defined by physical properties of a camera s, where the
global state of the optical sensor is assumed to be known as x° € X'®. Note that (~)
is an instance of (). The FOV of the optical sensor can be expressed by the prob-
ability of detecting the target Py (x}|x%) as *= X! = {x}|0 < Py (x}|x%) < 1}.
Accordingly, the target position observed from the optical sensor, *z} € X, is
given by

segl — {SCht (xk, x5, %evl), if xk € se Xt @)
a, otherwise

where *<ht is the optical sensor model, S“vfc is the observation noise, and & rep-
resents an “empty element”, indicating that the optical observation contains no in-
formation on the target or that the target is unobservable when it is not within the
observable region. The acoustic sensor can, on the other hand, observe a target on
the Non-Line-of-Sight (NLOS) or even in the NFOV with limited accuracy due to
the complex behavior of sound signals including reflection, refraction and diffrac-
tion. Because of its broad range, the observation region of the acoustic sensor could
be considered unlimited when compared to that of the optical sensor. The acoustic
sensor model *=h’ can be then constructed without defining an observable region
unlike the optical sensor model:

S‘IZ}; = Sapt (xfc,fcs, S“vz.) 3)

The RBE updates belief on a dynamical system, given by a probability den-
sity, in both time and observation. Let a sequence of observations of a mov-
ing target ¢ by a stationary sensor system s from time step 1 to time step k be
sz4.,. = {°z'|Vk € {1, ..., k}}. Given the initial belief p (x{,) , the sensor platform
state X* and a sequence of observations *z/ ,, the belief on the target at any time
step k, p (x4|°Z%.,,%*) can be estimated recursively through the two stage equa-
tions. The prediction may be expressed as

p (Xi‘siﬁ:k—pis) = /Xt p (Xﬂxi—l) p (Xfc—1|sit1:k—1vis) dxgcflv )



4 Takami et al.
whereas the correction takes the form

L(x "2, X°) p (X421, %)

a Je V(X 528, %%) p (%},2] 4y, X5) dxf )

®)

P (X}|* 214, X%)

where [ (x}|°Z},%*) represents the likelihood of x!, given °z! and X°, which

is a probabilistic version of the sensor model; i.e., Equation (2) if the sensor is
optical. It is to be noted that the likelihood does not need to be a probability density
since the normalization in Equation (5) makes the output belief a probability density
regardless of the formulation of the likelihood.

3 NFOV Acoustic Target Estimation

3.1 Indoor Installation

Figure 1 shows a schematic for the hardware installation necessary for the proposed
acoustic target estimation approach. As shown in the figure, microphones are placed
with some distance in the indoor environment. This is a complex environment where
optical sensors could not be used effectively as a large number of optical sensors
would need to be placed to cover the entire space. Microphones, on the other hand,
can collect information on the NFOV. A much lower number of inexpensive sensors
need to be installed for this reason, making the installation efficient in both time and
cost.

Fig. 1 Schematic of hardware
installation for proposed ap-
proach where circles indicate
microphones

3.2 Modeling of Acoustic Observation Likelihood

In accordance with the preliminary investigations of the authors [8], the theoret-
ical approach proposed in this paper constructs acoustic cues of the target in the
environment of concern a priori to create an acoustic observation likelihood. The
assumption of two-dimensional (2D) space and a use of a data collection device in
the proposed method reduce the time consumed by a priori data collection. First,
the three-dimensional (3D) complex environment can be simplified by assuming
the omni-directional sound source belongs in the 2D planar domain depicted in Fig-
ure 2. This assumption is realized by placing a sound source at a foot level which
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generally kept at constant height throughout movement of a human. Second, a pri-
ori sound data is collected automatically using a speaker with range finders, which
measures the distance to the walls to locate the speaker and emits white noise when
the data collection button is pressed.

Data collection points

X XTX X X X
X X:X X X
X X:X X X
X X_X

Wall 1T Speaker
,~ Range

e finder

Data Collect
button

Fig. 2 Data collection and localization

Having the data collected into the ILD database in the prior process, fig. 3 shows
a schematic diagram of the main process of the proposed approach. Given the tar-
get sound, The acoustic observation likelihood is created for each microphone pair
by correlating the observation with ILD vectors in the database. The collection of
observation likelihood finally yields a joint acoustic observation likelihood. This
fusion process only considers few dominant microphone pairs above the signal-to-
noise ratio (SNR) threshold for scalability of the system.

e e
' Motion Model ' Sensing TS

| | I Sargl | Database

| e Z). |

‘ 4 7 ¢ ; :

Prediction

Fig. 3 Schematic diagram of proposed approach within the RBE framework

Mathematically, let the estimation of the a priori i-th data collection position
be (fc}i)l When a target sound is observed by j,-th microphone at X}, the sound
is considered “detected” if the SNR of the microphone is greater than the SNR

threshold: _
= e ((f) ) g, (©)
Jm ambient
where w is the sound frequency. Stereo microphone pairs increase with combination
of form (:‘) = #lr), by choosing stereo pair » = 2 from n possible microphones.
Figure 4 shows the detectable region of red and yellow microphone as the j-th mi-
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crophone pair {j1, j2}. When the target is located within union of those regions, the
ILD of the microphone pair is constructed:

s Saj t Saj t
x' € % Xi(v,85) = "X (v4,,05) N 2 (4, 05). 7

where + is acoustic and environmental characteristics. It is reasonable to sort and

Fig. 4 Detectable region
indicated by lines for each
microphone location

choose the microphones with largest s° values. The maximum microphone pair is set
to be jmax - Following the above selection process, the ILD of the j-th microphone
pair {jy, j2} for the i-th position (X}),, AS] (w), is then given by

ASg (w) =201og ‘sjl (w| (5(2)1)’ —201log ‘sz (w| (5(}2)2)| . 8)
If the ILD is sampled at N frequencies 2 = [w1,...,w N]T, the ILD vector can be
described as

K3

s (Q) = [a{ASg (W1) ooy aly AS? (wN)]T, )

where

)

al = <min{‘sj1 (wn] (ifv)l) sj2 (wn| (i};)z) ’} —€). (10)
In the equation, (-) is Macaulay brackets, and min{-, -} returns the smaller value
of the two entities. The acoustic observation likelihood modeling results in the ILD
vectors for n target positions, i.e., S7* (Q),Vi € {1,...,n}. They are essentially
the acoustic cues to be prepared in advance and used to create the acoustic observa-
tion likelihood. The selection of microphone pairs S7* (2)Vj € {1, ..., jmax } must
satisfy the conditions s5 > ds.
Given the ILD vector S7 (2|x!) created from *z! with the unknown target posi-
tion x!, the proposed technique quantifies its degree of correlation to the i-th ILD
vector as

j t J* 1] s (“|X§C)T Si* (2)
X (9 (2]x),S]7 () == ‘ 15. 11
( (i) ( )) 2\ is7 (x| ( )’ + (1)

(2
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where 0 < X () < 1. The acoustic observation likelihood with the particular
S.m (€2]x},) can be finally calculated as

Iy (ekl'2, %) = Do () X (87 (Qhxh) .S (@), a2
=1

where ,ug (x}) is a basis function developed by adjacent measurements. One of the
suited basis function is a T-spline basis function where ;i (x%) in a T-mesh in pa-
rameter space (s, t) can be represented as

pim (s,t) = g(s)g(t) (13)

where g(s), and g(t) are the cubic B-spline basis functions. Further detailed formu-
lations are found in [14]. Similarly to X (-), 1§ (+) is also bounded as 0 < 1%, (-) <1
due to the use of the shape function.

Finally, the joint likelihood is derived by the canonical data fusion formula:

1 (xil*zh, %3) = [0 (xkl°zh, %3). (14)
J

4 Numerical and Experimental Analysis

The efficacy of the proposed approach was examined experimentally in two steps.
The first step was aimed at studying the capabilities and limitations of the proposed
acoustic sensing technique by parametrically changing the complexity of the test
environment. This was accomplished with an experimental system consisting of a
speaker array and a movable/replaceable wall developed specifically for this study.
After verifying the feasibility of the acoustic sensing technique for NLOS target
localization, the applicability of the proposed approach in a practical indoor sce-
nario was investigated. The investigation looked into not only the performance of
the proposed approach but also compared it to a conventional approach.

4.1 Acoustic Observation of NLOS Target

Figure 5(a) shows the design of the experimental system that changed the complex-
ity of the environment for the evaluation of the proposed approach. The number of
microphones was fixed at two to investigate the environmental complexity, and they
were located next to an outer wall and faced open space where a speaker array and
movable/replaceable wall(s) were placed. The complexity of the environment was
changed by varying two parameters of the movable/replaceable wall: the distance of
the wall to the edge of speaker array L4 and the length of the wall L,,. The shorter
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the distance and/or the larger the length, the more complex the environment due to
the increased number of reflections of the sound signal.

Speaker locations are shown in Figure 5(a) as blue crosses. A microcontroller
controlled speakers so that each speaker sequentially emitted white noise for a pro-
grammed period. A set of ILDs for a wall setting were thus collected automatically.
Once the ILDs were collected, the ability of the proposed approach was evaluated
by emitting sound from a speaker at some location within the area of the speaker
array and identifying the location in the form of an observation likelihood. This lo-
cation was different than that of the speakers of the speaker array to demonstrate the
ability of the proposed technique to identify the target at an arbitrary position.

Figure 5(b) shows the developed experimental system and the dimensions and
other parameters used in the experiments are listed in Table 1. Sound was sampled
at 8,192 frequency bins within the audible range to capture its behavior accurately.
54 speakers were aligned to cover the open space. The distance and the length of the
wall were varied to introduce both lightly NLOS and heavily NLOS environments.
The case of two walls (n,, = 2) was tested in addition to the single wall case
to increase environmental complexity. Only the distance of the wall closer to the
acoustic sensor was varied.

L
T A X XX
S e S
Speaker array
T . P L
(X X X X X 3 o e e
e ] | il !
o X=X — __.—_']:_E‘ h*" i e i J
’&: i"’" o

K X XX X X |,
¢ X X X X X
=K X X X X X

L A
et F & 2 2 —_

(a) Schematic design (b) Developed system

.4

Fig. 5 Experimental system for investigating environmental complexity

Table 1 Dimensions and other parameters in the experiments

Parameter | Value | | Parameter Value

x? single wall|[42, 34] [cm, cm] L 90 cm
x* double wall|[22, 56] [cm, cm] Height 0cm
w1 0 Hz Lo 50 cm

WN 22 kHz Lg 10 cm

N 8,192 L4({0,10,20,30} cm

€ 0.01 Ly| {50,60,70} cm

n 54 N {1,2}
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Figure 6 shows the resulting acoustic observation likelihoods when the sound
target was at position [42, 34] and [22, 56] for the single wall and double wall cases,
respectively. The former two cases were with a single wall at different distances.
The latter two cases were with two walls with different wall length. The result first
indicates that the target location is well estimated when the distance is short or
when the length is small. The target is closer to LOS in these conditions since sound
reaches the acoustic sensor with a small number of reflections. The identification of
the target location in the remaining two cases is difficult due to the number of sound
reflections. The identification with two walls is seen to be significantly harder than
that with a single wall for the same reason. While the acoustic observation likeli-
hood is heavily multi-modal with these cases, the target location is still captured
by the highest peak or at least by one of the peaks as shown in Figure 6(d). This
demonstrates the ability of the proposed approach to identify the location of the
NFOV target though with limited accuracy.

80 0 2 0 8

40
fom]

(b) {Lg4, L, nw}={30, 70,1}

40
e

E 4
Lt ]
L]
%
0
q Mic
o O Actual Pos
ol b O Estimation
o ol 40 -] 80
xlem]
(€) {Lg, Lw, nw}={20, 50, 2} (d) {Ly4, L, nw={20,70, 2}

Fig. 6 Acoustic likelihoods for different environmental complexity

Figure 7(a) and 7(b) show the mean error of the acoustic observation likelihood
when the distance and the length were varied for single and double wall cases. The
mean error is the distance of the nearest peak of the acoustic observation likelihood
to the true target location. The result of the mean error shows that the proposed
technique could locate the target to within 2 cm error in 11 of the 12 cases for
single wall case. The estimation was particularly good when the wall length was
small. Figure 7(c) shows the uncertainty comparison for the two cases, using the
differential entropy derived at a point within the normalized likelihood is used as the
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uncertainty. The mean entropies for the two cases show that uncertainty increases
with increase in number of walls for all wall lengths as expected. For the double
wall case, the uncertainty is higher with less success in target identification, but the
proposed approach could still be used to identify the target location.

R o "

Wl datarce o] o s [rrTe—— Winl dntance o) 9 =0 [Frrp—— T pa——Y one 50

W (=)

(a) Single wall mean error  (b) Double wall mean error (c) Differential entropy for
single and double wall

Fig. 7 Mean error and differential entropy of the acoustic observation likelihood with a single and
double wall

4.2 Applicability to Practical Indoor Scenario

4.2.1 Practical indoor scenario

Having validated the ability of the proposed acoustic sensing technique, the appli-
cability of the proposed approach in NFOV target estimation to a practical indoor
scenario was investigated. Figure 8 shows the actual indoor environment used for
the investigation: the apartment of an elderly person who needs home health care
service. As shown in the figure, the environment with five separate rooms is so
complicated that it is difficult to cover the entire area by cameras. In addition, this is
personal home, so cameras are not to be installed. The approximate dimensions of
the apartment are 7.1 m in width, 10.4 m in length and 2.5 m in height. Six micro-
phones, shown as red dots, were fixed to cover the entire space. The target person
carried a small speaker which emitted sound with white noise. Parameters used for
acoustic target estimation are listed in Table 2.

Table 2 Dimensions and other parameters in the experiments

Parameter| Value | | Parameter | Value

w1 0 [Hz] Height|5[cm]

wn |2.7 [kHz] k n| 255
N 2,000 el 0.01
ds 2
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Fig. 8 Map of the test envi-
ronment dimensions[m] and

other details

4.2.2 Results

10.4

Figure 9 shows the acoustic observation likelihoods created by microphone pairs
when the target person walked in Room 3. The square dot indicates the true target
position. Only the likelihoods with microphones 1-4 are shown since those with
microphones 5 and 6 did not meet the g . Identified best of the combinations
are pairs 2,3 and 1,3. Microphones 1-3 have the most direct LOS to Room 3, so
the result matched well with the expected observable region. Figure 10 shows the
resulting joint likelihood. The target location is accurately identified by filtering

uncertainties.
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Fig. 9 Acoustic likelihood in room 3 from multiple sensor combinations
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¥lm]

Fig. 10 Joint acoustic obser- S —
vation likelihood m)
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=
W

The result of RBE when the target person walked around is shown in Figure 12
with the true position again indicated by a square dot. It is seen that the proposed ap-
proach accurately tracks the target. The estimated position was less than 15 cm from
the true target position in 83 % of the time. Cameras and RF receivers/transmitters
cannot be used for such a highly constrained environment, so the conventional
acoustic sensing technique based on two microphones was tested as the only com-
parable approach. As shown in Figure 11, the conventional approach was not able
to identify the target location once it had failed in the localization.

] (111 1 15 2 25 ] (111 1 15 2 25
simi simi

(b) k = 11,[0.27,1.82] (¢) k = 21,[0.78,0.96]

0 05 1 15 2 25
*fm]

() k = 29,[1.63,0.79]

Fig. 11 Acoustic observation likelihood in room 3 with one microphone pair
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0 05 1 15 2 25 0 05 1 15 2 25 0 05 1 15 2 25
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(@) k =1,[1.96,1.13] (b) k = 11,[0.27,1.82] (¢) k = 21,[0.78,0.96]
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(d) k = 29,[1.63,0.79]

Fig. 12 Proposed Joint acoustic observation likelihood in room 3 with RBE

5 Conclusions

This paper has presented a new approach which uses a set of microphones to lo-
calize and track a mobile NFOV target, and its applicability and implementation
in complex indoor environments. The proposed approach derives the ILD of obser-
vations from a selected set of microphones for different target positions and stores
the ILDs as acoustic cues. Given a new sound, an acoustic observation likelihood is
computed for each pair of microphones by correlating ILDs. The joint likelihood is
then created by fusing the acoustic observation likelihoods, and the NFOV mobile
target is estimated by the RBE. Following the experimental parametric studies, the
proposed approach was applied to track an elderly person needing home health care
service, yielding an estimation which was successful to within 15 cm accuracy at
83 % of all the tested positions. These results have conclusively demonstrated the
potential of the proposed approach for practical target localization.

The paper has demonstrated the new concept, and many challenges are still open
for future study. The issues of immediate interest include the enhancement of acous-
tic sensing using the Interaural Time Difference (ITD) and the Interaural Phase
Difference (IPD) as well as the use of non-white noise sound with sound separa-
tion/speech recognition techniques, so that the approach could be used for various
applications. For the ILD database in a dynamic environment, automated update
needs further investigation.
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