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Abstract Colour-constant images have been shown to improve visual navigation
taking place over extended periods of time. These images use a colour space that
aims to be invariant to lighting conditions – a quality that makes them very attractive
for place recognition, which tries to identify temporally distant image matches.
Place recognition after extended periods of time is especially useful for SLAM
algorithms, since it bounds growing odometry errors. We present results from the
FAB-MAP 2.0 place recognition algorithm, using colour-constant images for the
first time, tested with a robot driving a 1 km loop 11 times over the course of
several days. Computation can be improved by grouping short sequences of images
and describing them with a single descriptor. Colour-constant images are shown to
improve performance without a significant impact on computation, and the grouping
strategy greatly speeds up computation while improving some performance measures.
These two simple additions contribute robustness and speed, without modifying
FAB-MAP 2.0.

1 Introduction

Visual place recognition aims to recognize, from a stream of images, if the vehicle is
revisiting a place it has previously seen. Since integrated odometry measurements
drift over time, this information is especially useful if a long period of time has passed
since the last visit. Over this period, lighting conditions will change, making it more
difficult to recognize the matching image. To address this problem, colour-constant
images transform an RGB image into a colour-space that changes less with lighting
conditions than greyscale [19, 7, 3, 12, 10, 16]. This paper presents experimental
results from a challenging multi-day dataset [16] where colour-constant images
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improve place recognition performance with no modification to the underlying
inference algorithm, Fast Appearance-Based Mapping (FAB-MAP) 2.0 [6].

The use of colour-constant images does add a small computational overhead, since
these images are used alongside the original greyscale images, increasing vocabulary
size and the average number of observed features. To recover this computation
effort, we use the the image grouping strategy introduced by MacTavish and Barfoot
[9]. This method is faster by an order of magnitude, improves some performance
measures (see Section 4), and does not require modification or parameter tuning of
the place recognition algorithm.

Similar work has been performed by Maddern and Vidas [11], who used
FAB-MAP with a monochromatic and thermal camera, with a similar channel-
concatenated Bag-of-Words (BoW). Collier et al. [2] address lighting change using
lidar geometry and monochromatic images, running FAB-MAP separately on each
sensor. MacTavish and Barfoot [9] use lidar intensity with FAB-MAP to achieve
lighting invariance, requiring specialized hardware and introducing motion distortion
due to a rolling shutter. Paul and Newman [17] augment visual features with spatial
information using lidar. This paper focuses on improved lighting invariance without
additional hardware beyond an RGB camera.

Sunderhauf et al. [20] use Sequence SLAM (SeqSLAM) [14] with monochromatic
images to localize a train over 3000 km across seasons with impressive results, but do
not perform full Simultaneous Localization and Mapping (SLAM) with the ability to
add new places. Milford [13] shows how SeqSLAM can use very-low-resolution im-
ages to localize by leveraging sequence information. The FAB-MAP image-grouping
strategy [9] used in this paper also makes use of sequence information by grouping
local regions in a single descriptor.

In an effort to learn appearance change and proactively translate the image to
different appearance conditions, Neubert et al. [15] introduce a super-pixel-based
translation algorithm. This algorithm targets large seasonal change rather than light-
ing, and requires training data of the expected appearance domain. Pepperell et al.
[18] blacken the sky in daytime images for better matching against those captured
at night using a whole-image matching technique. Aiming to improve lighting in-
variance at the descriptor level, Carlevaris-Bianco and Eustice [1] train neural-net
features using data from outdoor webcams. Colour-constant images improve lighting
invariance without algorithm modification even at the descriptor level.

Corke et al. [3] compute image similarity scores across a small set of colour-
constant images, and Maddern et al. [10] perform local metric localization; however,
there has not been an evaluation of place recognition using colour-constant images.
In this paper, we discuss this task and present the results of our approach on an 11
km dataset consisting of over 2000 images.

This paper presents novel results for place recognition using colour-constant
images. This contribution goes beyond the simple image similarity scores that have
been used in previous work to benchmark this image transform. In Section 2 we
discuss the place recognition and image processing techniques that we have used. In
Section 3 we discuss the field experiment, and in Section 4 we present and analyze the
experimental results. Final conclusions and future work are discussed in Section 5.
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2 Methodology

2.1 Place Recognition

The FAB-MAP algorithm and its extensions [5, 4, 6] have been extensively tested
and widely used; in particular, FAB-MAP 2.0 has been tested on a 1000 km dataset.
This paper examines the results of two input preprocessing techniques for place
recognition: colour-constant images, and BoW image grouping. For place recognition
itself, we use the OpenFABMAP implementation [8] of the FAB-MAP 2.0 algorithm
which is summarized below.

FAB-MAP uses a BoW descriptor to describe images. To train the BoW vocabu-
lary, Speeded Up Robust Features (SURF) descriptors are extracted from a training
image dataset. These descriptors are clustered, and the BoW vocabulary is described
by these cluster centers (words). An image can now be described by a BoW descriptor
by quantizing its SURF features using the vocabulary, and listing which words were
seen. A BoW descriptor can be represented as a binary vector of word presence,
or as a list of which words were observed. To learn a factorized probability prior
distribution over BoW descriptors, FAB-MAP trains a Chow-Liu Tree (CLT) using
the BoW descriptors from the training dataset.

FAB-MAP represents a place as a vector of Bernoulli variables indicating the
existence of the generator for each word in the vocabulary. The measurement model
is given by the trained CLT and two user-specified parameters, and full Bayesian
inference determines the posterior generator probabilities. The probability of being
in a new place is determined using a Monte-Carlo approximation, sampling training
images as representative new places. FAB-MAP 2.0 speeds up inference using an
inverted index for each word in the vocabulary and slightly modified inference.

FAB-MAP 2.0 also uses geometric verification in the form of a 1-point Random
Sample Consensus (RANSAC) test to improve precision. The results in this paper
focus only on the recall task, and have not used any geometric verification, though
they have used the FAB-MAP 2.0 simple motion model. Since the Visual Teach
& Repeat (VT&R) algorithm [16] used to collect the dataset is already performing
visual odometry, it would be straightforward to use only features that are stable over
a short distance to verify geometric stability; we leave this as future work.

2.2 Colour-Constant Images

Colour-constant images were first developed in the optics community. Recent meth-
ods are based on the theory that a 1D colour space that is invariant to outdoor lighting
conditions can be calculated from the channel responses of an RGB camera, given
certain assumptions about the sensor and environment [19, 7]. The method presented
by Ratnasingam and Collins [19] asserts that a colour-constant feature, F , can be
extracted from a three-channel camera from the following:
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F = log(R2)−α log(R1)+β log(R3), (1)

where Ri, is the approximated sensor response for channel i, and α and β are weights
subject to the following constraints:

1
λ2

=
α

λ1
+

β

λ3
, β = (1−α), (2)

where λ1,λ2,λ3 are the peak sensor responses numbered from highest to lowest. The
result of equation (1) is a 1D feature with much of the effect of lighting removed.

Colour-constant images have appeared in various forms [3, 12, 10, 16] in the
robotics and computer vision community. The approach taken in this paper is identical
to that of Paton et al. [16], which uses experimentally trained coefficients of equation
1 to obtain two colour-constant images: {F ′v ,F ′r} that perform well in vegetation and
rocks-and-sand, respectively. Examples of these images can be seen in Figure 1.

Fig. 1 This figure illustrates the transformation of an RGB image into a set of greyscale images.
The top image is a typical greyscale image obtained from the green channel, and the bottom two
are the colour-constant image pair {F ′v ,F ′r } [16] used in this paper to boost place recognition. By
making assumptions about the sensor and environment, a weighted log-difference of the three
camera channels can cancel the effect lighting has on the appearance of the scene. Credit: [16]

These images were used to great success in an autonomous route-following
algorithm presented by Paton et al. [16], which was used to collect the dataset that is
used in this paper. Details on the environment and route can be found in Section 3.

Since FAB-MAP requires a single BoW descriptor for each observation, we can
create a unified place descriptor by concatenating the BoW descriptors from each
channel [16, 11]: the green channel (greyscale), F ′v , and F ′r . A separate vocabulary is
trained for each channel, and each is quantized into a separate BoW descriptor. These
per-channel-BoW descriptors are concatenated into a stacked BoW that is used to
train the CLT, and for online place recognition. We expect that there will be a strong
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correlation between words in each of the channels, since the channels themselves
are correlated. Luckily the CLT accounts for this correlation to the extent that it is
apparent in the training dataset.

2.3 Image Grouping

MacTavish and Barfoot [9] show that sequences of images can be grouped together
and described with a single BoW descriptor. This provides two benefits: temporal
smoothing, which can improve robustness if features are somewhat unstable; and
a theoretical speedup of n2 for groups of n images. The major drawback is that
matches are not established at an image level. Simply adding the BoW descriptors
loses sparsity as group size increases. For the CLT training to be valid, these grouped
BoWs must have similar sparsity to the single-image training descriptors. We can
meet this requirement by increasing the binary BoW threshold, requiring multiple
observations of a word before it is considered present. A detailed description and
results for this method is available by MacTavish and Barfoot [9].

3 Field Experiment

A four day field trial was conducted at the Canadian Space Agency (CSA)’s Mars
Emulation Terrain (MET) at Montreal, Quebec on May 12-15th, 2014, with the pur-
pose of testing the colour-constant VT&R algorithm introduced by Paton et al. [16].
The MET, pictured in Figure 2, is a 60x120 m manicured environment emulating
the surface of Mars. It consists primarily of rock and sand, with interesting features
such as outcroppings and craters. The MET is surrounded by unstructured vegetation
containing trees, marshland, open fields, a small stream, and a gravel roadway.

The field trial proceeded by teaching a 1 km path, marked as a yellow line in
Figure 2, through the MET and its surrounding fields. This path was taught at
approximately 11 am on the first day during sunny conditions with pronounced
shadows. Over the course of the field trial, this path was autonomously traversed
26 times in varying lighting conditions. During this time the robot maintained an
autonomy rate of 99.9% of distance travelled.

The hardware setup used during these experiments is pictured in Figure 3. The
robot is the Clearpath Grizzly Robotic Utility vehicle. The VT&R algorithm ran on
an on-board computer using a Point Grey Research Bumblebee XB3 stereo camera.
GPS data was collected for the purpose of visualization only.

During the traversals of the 1 km path, the robot recorded rectified 512× 384
stereo RGB images at 16 hz from the Grizzly’s front PGR XB3 Camera. The result is
close to 1TB of stereo data along the same path in many lighting conditions. In this
paper we present results using 11 of these traversals, from dawn to dusk, selected
with the intent of maximizing appearance variation. Additionally, a 247 image, 1.2
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Fig. 2 Satellite Imagery of the CSA MET, with the teach pass from the 2014 field trials highlighted
in yellow, and interesting environmental features annotated. Credit: [16]

Fig. 3 Grizzly Robotic Vehicle autonomously repeating a route during the CSA field trials, with
applicable sensors highlighted. Credit: [16].
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km dataset was collected in Ontario, Canada, which was used for training the place
recognition algorithm.

4 Results

This section presents the place recognition results for the colour-constant and image
grouping techniques. Parameter training for the FAB-MAP algorithm is covered by
Cummins and Newman [5], the tuning process and results for the colour-constant
images are detailed by Paton et al. [16], and the tuning process for image groups is
explained by MacTavish and Barfoot [9].

The CSA dataset is quite challenging for several reasons. Over the course of
the experiment, the terrain was significantly modified by the vehicle, as shown in
Figures 4a,4c,4d. This dataset is collected by a single camera pointed forward and
down, meaning a significant portion of the field of view is physically changing over
the course of the experiment. As anticipated, the changing lighting conditions had
a large effect – including the robot’s own shadow being visible when the sun was
behind (see Figure 4b), leading to similar features being seen in different places
depending on the time of day. Natural environments also tend be more challenging
than urban [6], and the geometric intricacy of vegetation leads to difficult shadows as
lighting changes. Finally, at times the lighting conditions were so extreme that the
auto exposure was unable to produce a usable image (see Figure 4e).

FAB-MAP is fairly sensitive to feature stability, and SURF detector thresholds had
to be carefully selected for the colour-constant images, due to their far-lower dynamic
range (see Figure 1), and limited intensity information (by design). Initial results
used a detector threshold that would extract a similar number of features across all
image channels. This resulted in poorer performance than greyscale on its own, since
many of the colour-constant features turned out to be unstable. Since colour-constant
images are deliberately removing intensity information from the image to provide
invariance, there is less information remaining. This leads to a noisier image, and
noisier feature descriptors. The final SURF thresholds for the greyscale, F ′v , and F ′r
images lead to an average of 83, 9, and 22 keypoints per training image, respectively.
The clustering threshold was set so that the feature-to-vocabulary-size ratio was
similar for the image channels, resulting in 1017, 85 and 244 words per image type,
respectively. The performance for the greyscale-and-colour-constant stack is shown
in Figure 5 as Stack, and for the greyscale only baseline as Grey. Colour-constant-
only results have not been shown, as the low feature count and vocabulary size are
unable support place recognition alone. For equivalent recall, the precision is strictly
better using the colour-constant stack. The timing results in Table 1 show that there
is a 22% increase in computation, due to a larger vocabulary. Figure 6a shows an
example of a place that is correctly recognized by the colour-constant stack, but not
by greyscale.

Image sequences were also grouped in sequences of 5 images, to illustrate the
speed-up without introducing a large disparity in match specificity. MacTavish
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10:59 am

(a) Tall grass that was flattened by the vehi-
cle over the course of the experiment.

8:25 am

(b) The vehicle’s shadow is seen in different
places depending on the time of day.

10:37 am 8:26 am

(c) The same location during the first and last loop showing the terrain modification on sand.

10:50 am 8:36 am

(d) The same location during the first and last loop showing the terrain modification on vegetation.

11:03 am 8:27 pm

(e) The same location during the first and latest-in-the-day loop showing the auto exposure
struggling with low light and a still-bright sky.

Fig. 4 Example images from the test dataset showing several of the challenging cases.
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(a) Precision-Recall for all matches between loops. Unfortunately, the colour-constant stack shows
only modest improvement, and the image grouping fares far worse. This measure is the most
common, but is not necessarily representative of the desired output. The curve below presents an
alternative measure that might represent a more realistic use case.
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(b) Precision-Recall for at least one matches between loops (per query). This P-R curve represents
how the system might actually be used; if every query has at least one match, the connected
graph (chain of matches) will cover all of the loops even if they aren’t explicit. For example, if
query B matches place A and query C also matches place A, we can infer that C also matches B,
without needing to explicitly label that match. Contrary to 5a, the image groupings show improved
performance compared to their ungrouped counterparts, and the colour-constant stack is significantly
improved over greyscale. Both techniques combined produce far better recall at 100% precision.

Fig. 5 Precision-Recall curves for the recall-only task (no geometric verification). Grey indicates
only greyscale images were used, Stack consists of the greyscale as well as both colour-constant
images. The x5 indicates that sequences of 5 images were grouped and described with a single BoW
descriptor. Matches are labelled as true if they are within 30 m of ground truth.
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Table 1 Timing results show that the colour-constant stack only adds a small amount of overhead,
and that the image grouping is faster by an order of magnitude.

Name # Queries Average time (s)
Grey 2189 1.18
Stack 2189 1.44

Grey x5 437 0.11
Stack x5 437 0.15

6:33 pm 8:43 am

(a) A successful match at 95% precision with the colour-constant stack that was not found using
only greyscale (no image grouping).

6:38 pm 8:50 am

(b) A successful match at 95% precision with the image grouping that was not found using single
images (no colour-constant channels).

Fig. 6 Interesting examples of successful match hypotheses with the two processing techniques.

and Barfoot [9] further investigate different sized image groups. The binary BoW
threshold was chosen as 2 feature occurrences per group to maintain sparsity. The
mean binary BoW density for single images were 0.1357 and 0.1227; after grouping
and thresholding, they were 0.1149 and 0.1639, respectively. In both cases, the
speedup is approximately an order of magnitude (see Table 1). The precision-recall
curves shown in Figure 5 show that the grouping deflates the first measure, but
improves the second. The first measure considers the precision-recall if the task is to
identify all of the possible loop closures for each query. The second measure only
aims to find at least one of the loop closures. Due to the temporal ordering of the
queries, if every query has correctly identified at least one loop closure, all possible
loop closures are connected without the match being explicitly identified; e.g., B
matches A and C matches B, therefore C and A must be a match.



Beyond a Shadow of a Doubt: Place Recognition with Colour-Constant Images 11

The training for FAB-MAP must be done prior to run-time and is fairly time-
consuming compared to the online algorithm. Therefore, the place recognition algo-
rithm is trained in a geographically separate but visually similar environment. Due to
geographic limitations, and since this was the first major field deployment for this
robotic platform, our training dataset was restricted to 247 images over 1.2 km. It
consists of a dry-run for the CSA experiment that took place in Ontario, Canada,
primarily in vegetation with a very small sand portion. The confusion matrices,
showing the match probabilities for each query are shown in Figure 7. The difficult
checkered square regions are the rocks-and-sand sections of the trajectory, the terrain
type that was underrepresented in the training dataset.

5 Conclusion and Future Work

We can conclude that both colour-constant images and image grouping show value for
place recognition in real outdoor environments. We have also shown reasonable sys-
tem performance despite a very limited and not fully representative training dataset,
and difficult lighting conditions that changed over the course of the day. Future
work consists of improving the stability of the colour-constant image channels. By
increasing the contrast of the images, the features descriptors may be less corrupted
by quantization error, and the detector response may be more stable. A geometric
consistency check such as the FAB-MAP 2.0 1-point RANSAC will also improve
results by using more-stable features [6]. We can also verify geometric stability by
only using features that have been tracked through several frames by VT&R [16].
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